Volume 9, Issue 2 (Vol.9 No.2 Jul 2020)                   rbmb.net 2020, 9(2): 171-179 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghazi N, Aali N, Shahrokhi V, Mohajertehran F, Saghravanian N. Relative Expression of SOX2 and OCT4 in Oral Squamous Cell Carcinoma and Oral Epithelial Dysplasia. rbmb.net. 2020; 9 (2) :171-179
URL: http://rbmb.net/article-1-479-en.html
Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
Abstract:   (384 Views)
Background: Over 90% of oral cancers including oral squamous cell carcinoma (OSCC), originate from the oral cavity epithelium. Early detection for this lesion is as important. Evaluating cancer stem cell markers can improve the accuracy of early diagnosis, and be used as an OSCC prognostic indicator. We aimed to evaluate SOX2 and OCT4 gene expression among different grades of OSCC and oral epithelial dysplasia (OED) lesions.

Methods: Sixty samples that contains 45 OSCC and 15 OED samples were retrieved from the pathology department archives at the dental school of Mashhad. Demographic and pathological patient data including the tumor stage and tumor grade were assessed. Finally, SOX2 and OCT4 expression was examined using qRT-PCR.

Results: There was a significant difference in SOX2 and OCT4 expression between OSCC and OED samples (p< 0.001). The mean expression of SOX2 and OCT4 in OSCC samples were significantly higher than in the OED group (p< 0.001). The mean expression of SOX2 and OCT4 was higher in grade II and grade III OSCC compared to grade I. There was no significant relationship between the gene expression of SOX2 or OCT4 to the demographic, site and stage of tumors. The correlation between SOX2 and OCT4 expression (p= 0.001) was significant in grade III OSCC specimens compared to other grades (p= 0.005, r= 0.68).

Conclusions: The increased expression of SOX2 and OCT4 in higher grades and the significant correlation of these genes with each other among OSCC specimens could suggest the role of SOX2 or OCT4 in oral mucosal carcinogenesis.
Full-Text [PDF 219 kb]   (139 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2020/03/21 | Accepted: 2020/04/14 | Published: 2020/10/7

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. https://doi.org/10.3322/caac.21590 https://doi.org/10.3322/caac.21442 https://doi.org/10.3322/caac.21551 https://doi.org/10.3322/caac.21332 [DOI:10.3322/caac.21387]
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. [DOI:10.3322/caac.21492] [PMID]
3. Liu SA, Wong YK, Lin JC, Poon CK, Tung KC, Tsai WC. Impact of recurrence interval on survival of oral cavity squamous cell carcinoma patients after local relapse. Otolaryngol Head Neck Surg. 2007;136(1):112-8. [DOI:10.1016/j.otohns.2006.07.002] [PMID]
4. Sharma P, Saxena S, Aggarwal P. Trends in the epidemiology of oral squamous cell carcinoma in Western UP: an institutional study. Indian J Dent Res. 2010;21(3):316-9. [DOI:10.4103/0970-9290.70782] [PMID]
5. Woolgar JA, Scott J, Vaughan E, Brown J, West C, Rogers S. Survival, metastasis and recurrence of oral cancer in relation to pathological features. Annals of the Royal College of Surgeons of England. 1995;77(5):325.
6. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10(2):R25. [DOI:10.1186/bcr1982] [PMID] [PMCID]
7. Islam F, Qiao B, Smith RA, Gopalan V, Lam AK-Y. Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol. 2015;98(2):184-91. [DOI:10.1016/j.yexmp.2015.02.002] [PMID]
8. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004;23(43):7274-82. [DOI:10.1038/sj.onc.1207947] [PMID]
9. Allegra A, Alonci A, Penna G, Innao V, Gerace D, Rotondo F, et al. The cancer stem cell hypothesis: a guide to potential molecular targets. Cancer Invest. 2014;32(9):470-95. [DOI:10.3109/07357907.2014.958231] [PMID]
10. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. nature. 2001;414(6859):105-11. [DOI:10.1038/35102167] [PMID]
11. Yu CC, Hu FW, Yu CH, Chou MY. Targeting CD133 in the enhancement of chemosensitivity in oral squamous cell carcinoma-derived side population cancer stem cells. Head & neck. 2016;38(S1):E231-E8. [DOI:10.1002/hed.23975] [PMID]
12. Krishnamurthy S, Nor J. Head and neck cancer stem cells. Journal List. 2012;91(4):334-340. [DOI:10.1177/0022034511423393] [PMID] [PMCID]
13. Vaiphei K, Sinha SK, Kochhar R. Comparative analysis of Oct4 in different histological subtypes of esophageal squamous cell carcinomas in different clinical conditions. Asian Pac J Cancer Prev. 2014;15(8):3519-24. [DOI:10.7314/APJCP.2014.15.8.3519] [PMID]
14. Li Y, Lv Z, He G, Wang J, Zhang X, Lu G, et al. The SOX17/miR-371-5p/SOX2 axis inhibits EMT, stem cell properties and metastasis in colorectal cancer. Oncotarget. 2015;6(11):9099-112. [DOI:10.18632/oncotarget.3603] [PMID] [PMCID]
15. Ren ZH, Zhang CP, Ji T. Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis. Oncol lett. 2016;11(3):1973-1979. [DOI:10.3892/ol.2016.4207] [PMID] [PMCID]
16. Fu TY, Hsieh IC, Cheng JT, Tsai MH, Hou YY, Lee JH, et al. Association of OCT 4, SOX 2, and NANOG expression with oral squamous cell carcinoma progression. J Oral Pathol Med. 2016;45(2):89-95. [DOI:10.1111/jop.12335] [PMID]
17. Baghai Naini F, Aminishakib P, Abdollahi A, Hodjat M, Mohammadpour H, Kardouni Khoozestani N. Relative Expression of OCT4, SOX2 and NANOG in Oral Squamous Cell Carcinoma Versus Adjacent Non-Tumor Tissue. Asian Pac J Cancer Prev. 2019;20(6):1649-1654. [DOI:10.31557/APJCP.2019.20.6.1649] [PMID] [PMCID]
18. Mohtasham N, Ayatollahi H, Saghravanian N, Zare R, Shakeri M, Sahebkar A, et al. Evaluation of Tissue and Serum Expression Levels of Lactate Dehydrogenase Isoenzymes in Patients with Head and Neck Squamous Cell Carcinoma. Anticancer Agents Med Chem. 2019;19(17):2072-2078. [DOI:10.2174/1871520619666191014160818] [PMID]
19. Mohajertehran F, Ayatollahi H, Jafarian AH, Khazaeni K, Soukhtanloo M, Shakeri M-T, et al. Overexpression of Lactate Dehydrogenase in the Saliva and Tissues of Patients with Head and Neck Squamous Cell Carcinoma. Rep Biochem Mol Biol. 2019;7(2):142-149.
20. Griffin JD, Lowenberg B. Clonogenic cells in acute myeloblastic leukemia. Blood. 1986;68(6):1185-95. https://doi.org/10.1182/blood.V68.6.1185.1185 [DOI:10.1182/blood.V68.6.1185.bloodjournal6861185]
21. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11(4):R46. [DOI:10.1186/bcr2333] [PMID] [PMCID]
22. Hussenet T, du Manoir S. SOX2 in squamous cell carcinoma: amplifying a pleiotropic oncogene along carcinogenesis. Cell Cycle. 2010;9(8):1480-6. [DOI:10.4161/cc.9.8.11203] [PMID]
23. Verma V, Chandrashekar C. Evaluation of SOX2 and podoplanin expression in oral epithelial dysplasia and its correlation with malignant transformation. Journal of investigative and clinical dentistry. 2019;10(4):e12450. [DOI:10.1111/jicd.12450]
24. Qiao B, He B, Cai J, Yang W. The expression profile of Oct4 and Sox2 in the carcinogenesis of oral mucosa. Int J Clin Exp Pathol. 2014;7(1):28-37.
25. Yuan P, Kadara H, Behrens C, Tang X, Woods D, Solis LM, et al. Sex determining region Y-Box 2 (SOX2) is a potential cell-lineage gene highly expressed in the pathogenesis of squamous cell carcinomas of the lung. PloS one. 2010;5(2):e9112. [DOI:10.1371/journal.pone.0009112] [PMID] [PMCID]
26. de Vicente JC, Donate-Pérez del Molino P, Rodrigo JP, Allonca E, Hermida-Prado F, Granda-Díaz R, et al. SOX2 Expression Is an Independent Predictor of Oral Cancer Progression. J Clin Med. 2019;8(10):1744. [DOI:10.3390/jcm8101744] [PMID] [PMCID]
27. Huang CF, Xu XR, Wu TF, Sun ZJ, Zhang WF. Correlation of ALDH 1, CD 44, OCT 4 and SOX 2 in tongue squamous cell carcinoma and their association with disease progression and prognosis. J Oral Pathol Med. 2014;43(7):492-8. [DOI:10.1111/jop.12159] [PMID]
28. González-Márquez R, Llorente JL, Rodrigo JP, García-Pedrero JM, Álvarez-Marcos C, Suárez C, et al. SOX2 expression in hypopharyngeal, laryngeal, and sinonasal squamous cell carcinoma. Human pathology. 2014;45(4):851-7. [DOI:10.1016/j.humpath.2013.12.004] [PMID]
29. Neumann J, Bahr F, Horst D, Kriegl L, Engel J, Mejías-Luque R, et al. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC cancer. 2011;11:518. [DOI:10.1186/1471-2407-11-518] [PMID] [PMCID]
30. Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, et al. A protein interaction network for pluripotency of embryonic stem cells. Nature. 2006;444(7117):364-8. [DOI:10.1038/nature05284] [PMID]
31. Park I-H, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. nature. 2008;451(7175):141-6. [DOI:10.1038/nature06534] [PMID]
32. Tsai L-L, Hu F-W, Lee S-S, Yu C-H, Yu C-C, Chang Y-C. Oct4 mediates tumor initiating properties in oral squamous cell carcinomas through the regulation of epithelial-mesenchymal transition. PloS one. 2014;9(1):e87207. [DOI:10.1371/journal.pone.0087207] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb