Volume 9, Issue 3 (Vol.9 No.3 Oct 2020)                   rbmb.net 2020, 9(3): 357-365 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salimi M, Shirazi A, Norouzian* M, Jafari A, Edalatkhah H, Mehravar M, et al . H19/Igf2 Expression and Methylation of Histone 3 in Mice Chimeric Blastocysts. rbmb.net 2020; 9 (3) :357-365
URL: http://rbmb.net/article-1-525-en.html
Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran & Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.
Abstract:   (2560 Views)
Background: Currently, the efficient production of chimeric mice and their survival are still challenging. Recent researches have indicated that preimplantation embryo culture media and manipulation lead to abnormal methylation of histone in the H19/Igf2 promotor region and consequently alter their gene expression pattern. This investigation was designed to evaluate the relationship between the methylation state of histone
H3 and H19/Igf2 expression in mice chimeric blastocysts.

Methods: Mouse 129/Sv embryonic stem cells (mESCs) expressing the green fluorescent protein (mESCs- GFP) were injected into the perivitelline space of 2.5 days post-coitis (dpc) embryos (C57BL/6) using a micromanipulator. H3K4 and H3K9 methylation, and H19 and Igf2 expression was measured by immunocytochemistry and q-PCR, respectively, in blastocysts.

Results: Histone H3 trimethylation in H3K4 and H3K9 in chimeric blastocysts was significantly less and greater, respectively (p< 0.05), than in controls. H19 expression was significantly less (p< 0.05), while Igf2 expression was less, but not significantly so, in chimeric than in control blastocysts.

Conclusions: Our results showed, that the alteration ofH3K4me3 and H3K9me3 methylation, change H19/Igf2 expression in chimeric blastocysts.
Full-Text [PDF 275 kb]   (1378 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2020/07/9 | Accepted: 2020/07/19 | Published: 2020/12/1

References
1. Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, et al. F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. nature biotechnology. 2007;25:91-99. [DOI:10.1038/nbt1263] [PMID]
2. Tam PP, Rossant J. Mouse embryonic chimeras: tools for studying mammalian development. Development. 2003 Dec;130(25):6155-63. [DOI:10.1242/dev.00893] [PMID]
3. Mak TW. Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell. 2007;131(6):1027-1031. [DOI:10.1016/j.cell.2007.11.033] [PMID]
4. Behringer RR. Human-animal chimeras in biomedical research. Cell Stem Cell. 2007;1(3):259-62. [DOI:10.1016/j.stem.2007.07.021] [PMID]
5. Lee K-H. Methods to generate chimeric mice from embryonic stem cells. Embryonic Stem Cells-Basic Biology to Bioengineering. 2011. [DOI:10.5772/23420]
6. De Repentigny Y, Kothary R. Production of mouse chimeras by injection of embryonic stem cells into the perivitelline space of one-cell stage embryos. Transgenic Res. 2010;19(6):1137-44. [DOI:10.1007/s11248-010-9369-6] [PMID]
7. Saburi S, Azuma S, Sato E, Toyoda Y, Tachi C. Developmental fate of single embryonic stem cells microinjected into 8‐cell‐stage mouse embryos. Differentiation. 1997;62(1):1-11. [DOI:10.1046/j.1432-0436.1997.6210001.x] [PMID]
8. Khosla S, Dean W, Reik W, Feil R. Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update. 2001;7(4):419-27. [DOI:10.1093/humupd/7.4.419] [PMID]
9. De Rycke M, Liebaers I, Van Steirteghem A. Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance. Hum Reprod. 2002;17(10):2487-94. [DOI:10.1093/humrep/17.10.2487] [PMID]
10. Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics. 2014;9(6):803-15. [DOI:10.4161/epi.28711] [PMID] [PMCID]
11. Eroglu A, Layman LC. Role of ART in imprinting disorders. Semin Reprod Med. 2012;30(2):10. [DOI:10.1055/s-0032-1307417] [PMID] [PMCID]
12. El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril. 2013;99(3):632-41. [DOI:10.1016/j.fertnstert.2012.12.044] [PMID]
13. Cassidy FC, Charalambous M. Genomic imprinting, growth and maternal-fetal interactions. J Exp Biol. 2018;221(Pt Suppl 1):jeb164517. [DOI:10.1242/jeb.164517] [PMID]
14. Williamson CM, Blake A, Thomas S, Beechey CV, Hancock J, Cattanach BM, and Peters J (2013), MRC Harwell, Oxfordshire. World Wide Web Site - Mouse Imprinting Data and References http://www.har.mrc.ac.uk/research/genomic_imprinting/.
15. Jahangiri M, Shahhoseini M, Movaghar B. H19 and MEST gene expression and histone modification in blastocysts cultured from vitrified and fresh two-cell mouse embryos. Reprod Biomed Online. 2014;29(5):559-66. [DOI:10.1016/j.rbmo.2014.07.006] [PMID]
16. Park C-H, Uh K-J, Mulligan BP, Jeung E-B, Hyun S-H, Shin T, et al. Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos. PloS One. 2011;6(7):e22216. [DOI:10.1371/journal.pone.0022216] [PMID] [PMCID]
17. Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth (Review). Mol Med Rep. 2012;5(4):883-889 [DOI:10.3892/mmr.2012.763] [PMID] [PMCID]
18. Hur SK, Freschi A, Ideraabdullah F, Thorvaldsen JL, Luense LJ, Weller AH, et al. Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver-Russell syndrome phenotypes. Proc Natl Acad Sci U S A. 2016;113(39):10938-43. [DOI:10.1073/pnas.1603066113] [PMID] [PMCID]
19. Li T, Vu TH, Ulaner GA, Littman E, Ling J-Q, Chen H-L, et al. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod. 2005;11(9):631-40. [DOI:10.1093/molehr/gah230] [PMID]
20. Maupetit-Méhouas S, Montibus B, Nury D, Tayama C, Wassef M, Kota SK, et al. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res. 2015;44(2):621-35. [DOI:10.1093/nar/gkv960] [PMID] [PMCID]
21. Lin S. Roles of Protein Factors in Regulation of Imprinted Gene Expression. 2011.
22. Wang Z, Xu L, He F. Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil Steril. 2010;93(8):2729-33 [DOI:10.1016/j.fertnstert.2010.03.025] [PMID]
23. Franco MM, Prickett AR, Oakey RJ. The role of CCCTC-binding factor (CTCF) in genomic imprinting, development, and reproduction. Biology of Reproduction. 2014;91(5):1-9. [DOI:10.1095/biolreprod.114.122945] [PMID]
24. Vasudevan K, Sztein J. In vitro fertility rate of 129 strain is improved by buserelin (gonadotropin-releasing hormone) administration prior to superovulation. Lab Anim. 2012;46(4):299-303. [DOI:10.1258/la.2012.012073] [PMID] [PMCID]
25. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev. 1995;41(2):232-238. [DOI:10.1002/mrd.1080410214] [PMID]
26. Guo J, Wu B, Li S, Bao S, Zhao L, Hu S, et al. Contribution of mouse embryonic stem cells and induced pluripotent stem cells to chimeras through injection and coculture of embryos. Stem Cell Int. 2014;2014:409021. [DOI:10.1155/2014/409021] [PMID] [PMCID]
27. Salimi M, Shirazi A, Norouzian M, Mehrazar MM, Naderi MM, Shokrgozar MA, et al. Histone Modifications of H3K4me3, H3K9me3 and Lineage Gene Expressions in Chimeric Mouse Embryo. Cell J. 2020;22(1):96-105.
28. Koustas G, Sjoblom C. Minute changes to the culture environment of mouse pre-implantation embryos affect the health of the conceptus. Asian Pacific Journal of Reproduction. 2016;5(4):287-294. [DOI:10.1016/j.apjr.2016.06.015]
29. Swain JE, Carrell D, Cobo A, Meseguer M, Rubio C, Smith GD. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105(3):571-587. [DOI:10.1016/j.fertnstert.2016.01.035] [PMID]
30. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil steril. 2009;91(2):305-15. [DOI:10.1016/j.fertnstert.2009.01.002] [PMID] [PMCID]
31. Uyar A, Seli E. The impact of assisted reproductive technologies on genomic imprinting and imprinting disorders. Curr Opin Obstet Gynecol. 2014;26(3):210-221. [DOI:10.1097/GCO.0000000000000071] [PMID] [PMCID]
32. Plasschaert RN, Bartolomei MS. Genomic imprinting in development, growth, behavior and stem cells. Development. 2014;141(9):1805-13. [DOI:10.1242/dev.101428] [PMID] [PMCID]
33. Schulz R, Menheniott TR, Woodfine K, Wood AJ, Choi JD, Oakey R. Chromosome-wide identification of novel imprinted genes using microarrays and uniparental disomies. Nucleic Acids res. 2006;34(12):e88-e88. [DOI:10.1093/nar/gkl461] [PMID] [PMCID]
34. Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod. 2001;64(3):918-926. [DOI:10.1095/biolreprod64.3.918] [PMID]
35. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62(6):1526-35. [DOI:10.1095/biolreprod62.6.1526] [PMID]
36. Fedoriw A, Mugford J, Magnuson T. Genomic imprinting and epigenetic control of development. Cold Spring Harb Perspect Biol. 2012;4(7):a008136. [DOI:10.1101/cshperspect.a008136] [PMID] [PMCID]
37. Ribeiro-Mason K, Boulesteix C, Brochard V, Aguirre-Lavin T, Salvaing J, Fleurot R, et al. Nuclear dynamics of histone H3 trimethylated on lysine 9 and/or phosphorylated on serine 10 in mouse cloned embryos as new markers of reprogramming?. Cell Reprogram. 2012;14(4):283-294. [DOI:10.1089/cell.2011.0071] [PMID]
38. Ren Y-X, Chang W, Qiao J. Epigenetic Modification in Oocyte and reimplantation Embryonic Development. ReprodDevelop Med. 2017;1(1):13-17. [DOI:10.4103/2096-2924.210694]
39. Dindot SV, Person R, Strivens M, Garcia R, Beaudet AL. Epigenetic profiling at mouse imprinted gene clusters reveals novel epigenetic and genetic features at differentially methylated regions. Genome Res. 2009;19(8):1374-83. [DOI:10.1101/gr.089185.108] [PMID] [PMCID]
40. Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature. 2016;537(7621):553-557. [DOI:10.1038/nature19361] [PMID]
41. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379-391. [DOI:10.1016/S0092-8674(00)81769-9]
42. Chantalat S, Depaux A, Héry P, Barral S, Thuret JY, Dimitrov S, Gérard M. Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin. Gen Res. 2011; 21(9):1426-37. [DOI:10.1101/gr.118091.110] [PMID] [PMCID]
43. Pannetier M, Julien E, Schotta G, Tardat M, Sardet C, Jenuwein T, Feil R. PR‐SET7 and SUV4‐20H regulate H4 lysine‐20 methylation at imprinting control regions in the mouse. EMBO Rep. 2008;9(10):998-1005. [DOI:10.1038/embor.2008.147] [PMID] [PMCID]
44. Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero S, Frost JM, Stafford JL, Chaoqun Y, Duncan AJ. The role and interaction of imprinted genes in human fetal growth. Philosophical Transactions of the Royal Society B: Biologic Sci. 2015 5;370(1663):20140074. [DOI:10.1098/rstb.2014.0074] [PMID] [PMCID]
45. Wang Z, Xu L, He F. Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil Steril. 2010;93(8):2729-33. [DOI:10.1016/j.fertnstert.2010.03.025] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb