Volume 9, Issue 3 (Vol.9 No.3 Oct 2020)                   rbmb.net 2020, 9(3): 331-337 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asgharian-Rezaee M, Alipour-Farmad R, Tayarani-Najaran Z. Comparison of Osteogenic Potential of Phenytoin with Dexamethasone in Cultured Dental Pulp Stem Cells. rbmb.net. 2020; 9 (3) :331-337
URL: http://rbmb.net/article-1-532-en.html
Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Abstract:   (293 Views)
Background: One of the adverse effects of phenytoin (diphenylhydantoin, DPH) is enlargement of facial features. Although there are some reports on anabolic action of phenytoin on bone cells, the osteogenic potential of DPH on mesenchymal stem cells has not been studied. The purpose of this study was to evaluate the osteogenic potential of DPH on dental pulp stem cells (DPSCs).

Methods: Human DPSCs were isolated and characterized by flow cytometry; presence of CD29 and CD44 and absence of CD34 and CD45 were performed to confirm the mesenchymal stem cells. Isolated DPSCs were differentiated either in conventional osteogenic medium with Dexamethasone or medium containing different concentration of phenytoin (12.5, 25, 100, and 200 µM). The osteogenic differentiation evaluated by performing western blot test for Runt-related transcription factor 2 (RUNX2), osteopontin and alkaline phosphatase (ALP) also alizarin red S staining to measure the mineralization of cells.

Results: Our results showed morphological changes and mineralization of DPSCs by using DPH were comparable with dexamethasone. Moreover, western blot results of DPH group showed significant increase of ALP, RUNX2 and osteopontin (OSP) in comparison with control.

Conclusions: The data of present study showed the osteogenic activity of phenytoin, considering as an alternative of dexamethasone for inducing osteogenic differentiation of dental pulp stem cells.
Full-Text [PDF 210 kb]   (81 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2020/07/17 | Accepted: 2020/08/9 | Published: 2020/12/1

References
1. Ferro F, Spelat R, Baheney CS. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods Mol Biol. 2014;1210:91-115. [DOI:10.1007/978-1-4939-1435-7_8] [PMID]
2. Spath L, Rotilio V, Alessandrini M, Gambara G, De Angelis L, Mancini M, et al. Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J Cell Mol Med. 2010;14(6B):1635-44. [DOI:10.1111/j.1582-4934.2009.00848.x] [PMID] [PMCID]
3. Mikami Y, Matsumoto T, Kano K, Toriumi T, Somei M, Honda MJ, et al. Current status of drug therapies for osteoporosis and the search for stem cells adapted for bone regenerative medicine. Anat Sci Int. 2014;89(1):1-10. [DOI:10.1007/s12565-013-0208-8] [PMID]
4. D'Alimonte I, Nargi E, Lannutti A, Marchisio M, Pierdomenico L, Costanzo G, et al. Adenosine A1 receptor stimulation enhances osteogenic differentiation of human dental pulp-derived mesenchymal stem cells via WNT signaling. Stem Cell Res. 2013;11(1):611-24. [DOI:10.1016/j.scr.2013.04.002] [PMID]
5. Pozio A, Palmieri A, Girardi A, Cura F, Carinci F. Titanium nanotubes activate genes related to bone formation in vitro. Dent Res J (Isfahan). 2012;9(Suppl 2):S164-S168.
6. Huojia M, Muraoka N, Yoshizaki K, Fukumoto S, Nakashima M, Akamine A, et al. TGF-beta3 induces ectopic mineralization in fetal mouse dental pulp during tooth germ development. Dev Growth Differ. 2005;47(3):141-52. [DOI:10.1111/j.1440-169x.2005.00790.x] [PMID]
7. Seymour RA, Smith DG, Turnbull DN. The effects of phenytoin and sodium valproate on the periodontal health of adult epileptic patients. J Clin Periodontol. 1985;12(6):413-9. [DOI:10.1111/j.1600-051X.1985.tb01377.x] [PMID]
8. Ikedo D, Ohishi K, Yamauchi N, Kataoka M, Kido J, Nagata T. Stimulatory effects of phenytoin on osteoblastic differentiation of fetal rat calvaria cells in culture. Bone. 1999;25(6):653-660. [DOI:10.1016/S8756-3282(99)00222-7]
9. Ohta T, Wergedal JE, Gruber HE, Baylink DJ, Lau KH. Low dose phenytoin is an osteogenic agent in the rat. Calcified Tissue International. 1995;56:42-48. [DOI:10.1007/BF00298743] [PMID]
10. Ohta T, Wergedal JE, Matsuyama T, Baylink DJ, Lau KH. Phenytoin and fluoride act in concert to stimulate bone formation and to increase bone volume in adult male rats. Calcified Tissue International. 1995;56:390-397. [DOI:10.1007/BF00301608] [PMID]
11. Hatch NE, Li Y, Franceschi RT. FGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2. J Bone Miner Res. 2009;24(4):652-662. [DOI:10.1359/jbmr.081213] [PMID] [PMCID]
12. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339(1):189-95. [DOI:10.1007/s00441-009-0832-8] [PMID]
13. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med. 2000;11(3):279-303. [DOI:10.1177/10454411000110030101] [PMID]
14. Weng JJ, Su Y. Nuclear matrix-targeting of the osteogenic factor Runx2 is essential for its recognition and activation of the alkaline phosphatase gene. Biochim Biophys Acta. 2013;1830(3):2839-52. [DOI:10.1016/j.bbagen.2012.12.021] [PMID]
15. Pisciotta A, Carnevale G, Meloni S, Riccio M, De Biasi S, Gibellini L, et al. Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Dev Biol. 2015;15:14. [DOI:10.1186/s12861-015-0065-x] [PMID] [PMCID]
16. Grottkau BE, Purudappa PP, Lin YF. Multilineage differentiation of dental pulp stem cells from green fluorescent protein transgenic mice. Int J Oral Sci. 2010;2(1):21-27. [DOI:10.4248/IJOS10015] [PMID] [PMCID]
17. Amir LR, Suniarti DF, Utami S, Abbas B. Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells. Cell Tissue Res. 2014;358(2):407-15. [DOI:10.1007/s00441-014-1938-1] [PMID]
18. Wyles CC, Houdek MT, Wyles SP, Wagner ER, Behfar A, Sierra RJ. Differential cytotoxicity of corticosteroids on human mesenchymal stem cells. Clin Orthop Relat Res. 2015;473(3):1155-64. [DOI:10.1007/s11999-014-3925-y] [PMID] [PMCID]
19. Guzmán-Morales J, El-Gabalawy H, Pham MH, Tran-Khanh N, McKee MD, Wu W, et al. Effect of chitosan particles and dexamethasone on human bone marrow stromal cell osteogenesis and angiogenic factor secretion. Bone. 2009;45(4):617-626. [DOI:10.1016/j.bone.2009.06.014] [PMID]
20. Monteiro N, Martins A, Ribeiro D, Faria S, Fonseca NA, Moreira JN, et al. On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med. 2015;9(9):1056-66. [DOI:10.1002/term.1817] [PMID]
21. Nakade O, Baylink DJ, Lau KH. Osteogenic actions of phenytoin in human bone cells are mediated in part by TGF-beta 1. J Bone Miner Res. 1996;11(12):1880-8. [DOI:10.1002/jbmr.5650111208] [PMID]
22. Lau KH, Nakade O, Barr B, Taylor AK, Houchin K, Baylink DJ. Phenytoin increases markers of osteogenesis for the human species in vitro and in vivo. The Journal of Clinical Endocrinology & Metabolism. 1995;80(8):2347-2353. https://doi.org/10.1210/jcem.80.8.7629228 [DOI:10.1210/jc.80.8.2347] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb