Volume 9, Issue 4 (Vol.9 No.4 Jan 2021)                   rbmb.net 2021, 9(4): 452-462 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ibrahim N E, Morsy H, Abdelgwad M. The Comparative Effect of Nisin and Thioridazine as Potential Anticancer Agents on Hepatocellular Carcinoma. rbmb.net. 2021; 9 (4) :452-462
URL: http://rbmb.net/article-1-591-en.html
Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
Abstract:   (1222 Views)
Background: Hepatocellular carcinoma is a major health problem worldwide especially in Egypt. It accounts for the fifth common cancer and the second cause of death among different cancers. This study investigated the efficacy and molecular mechanism of Nisin and/or Thioridazine as anticancer treatment on human liver cancer HepG2 cell line.

Methods: Nisin and Thioridazine were applied for 24 h on human liver cancer cell line (HepG2). 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was done to assess the cytotoxicity of Nisin and Thioridazine. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used for the assessment of PI3K, AKT, SIRT-1, and NRF2 expression in the treated cell line. The protein level of reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF) was measured in the collected media by ELISA technique. Western blot analysis was done for, tAKT, pAKT, tPI3K, and pPI3K.

Results: Cell proliferation results showed that compared with the untreated cancer, Nisin and/or Thioridazine treated groups had decreased cell proliferation (p value< 0.0001). Nisin and/or Thioridazine decreased PI3K/AKT mRNA and protein expression in hepatocellular carcinoma cells (HCC). Also Nisin and/or Thioridazine decreased anti-oxidative SIRT1/NRF2 mRNA expression. ROS level highly increased with Nisin and/or Thioridazine treatment in contrast to VEGF protein level which was highly decreased.

Conclusions: These results introduce Nisin and Thioridazine as new therapeutic lines in HCC.
Full-Text [PDF 430 kb]   (337 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2020/10/17 | Accepted: 2020/11/1 | Published: 2021/03/8

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108. [DOI:10.3322/caac.21262] [PMID]
2. Lubelski J, Rink R, Khusainov R, G N Moll, O P Kuipers. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic Nisin. Cell Mol Life Sci. 2008;65(3):455-76. [DOI:10.1007/s00018-007-7171-2] [PMID]
3. De Arauz LJ, Jozala AF, Mazszola PG, et al. Nisin biotechnological production and application: a review. Trends in Food Science & Technology. 2009;20(3-4):146-154. [DOI:10.1016/j.tifs.2009.01.056]
4. Patel JD, Krilov L, Adams S, Aghajanian C, Basch E, Brose MS, et al. Clinical cancer advances 2013: Annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2014;32(2):129-60. [DOI:10.1200/JCO.2013.53.7076] [PMID]
5. Miller DK, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2019;69(5):363-385. [DOI:10.3322/caac.21565] [PMID]
6. Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical Applications of Nisin. J Appl Microbiol. 2016;120(6):1449-65. [DOI:10.1111/jam.13033] [PMID] [PMCID]
7. Joo NE, Ritchie K, Kamarajan P, Miao D and Kapila YL. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012;1(3):295-305. [DOI:10.1002/cam4.35] [PMID] [PMCID]
8. Ohman R, Axelsson R. Relationship between prolactin response and antipsychotic effect of Thioridazine in psychiatric-patients. Eur J Clin Pharmacol. 1978;14(2):111-116. [DOI:10.1007/BF00607441] [PMID]
9. Realmuto GM, Erickson WD, Yellin AM, Hopwood JH, Greenberg LM. Clinical comparison of thiothixene and Thioridazine in schizophrenic adolescents. Am J Psychiatry. 1984;141(3):440-2. [DOI:10.1176/ajp.141.3.440] [PMID]
10. van Soolingen D, Hernandez-Pando R, Orozco H, Aguilar D, Magis-Escurra C, Amaral L, et al. The antipsychotic Thioridazine shows promising therapeutic activity in a mouse model of multidrug-resistant tuberculosis. PLoS One. 2010;5(9):e12640. [DOI:10.1371/journal.pone.0012640] [PMID] [PMCID]
11. Thorsing M, Klitgaard JK, Atilano ML, Skov MN, Kolmos HJ, Filipe SR, et al. Thioridazine induces major changes in global gene expression and cell wall composition in methicillin-resistant Staphylococcus aureus USA300. PLoS One. 2013;8(5):e64518. [DOI:10.1371/journal.pone.0064518] [PMID] [PMCID]
12. Gil-Ad I, Shtaif B, Levkovitz Y, Nordenberg J, Taler M, Korov I, et al. Phenothiazines induce apoptosis in a B16 mouse melanoma cell line and attenuate in vivo melanoma tumor growth. Oncol Rep. 2006;15(1):107-112. [DOI:10.3892/or.15.1.107] [PMID]
13. Park MS, Dong SM, Kim BR, Seo SH, Kang S, Lee EJ, et al. Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts. Oncotarget. 2014;5(13):4929-34. [DOI:10.18632/oncotarget.2063] [PMID] [PMCID]
14. Lu M, Li J, Luo Z, Zhang S, Xue S, Wang K, et al. Roles of dopamine receptors and their antagonist Thioridazine in hepatoma metastasis. Onco Targets Ther. 2015;8:1543-1552. [DOI:10.2147/OTT.S77373] [PMID] [PMCID]
15. Byun HJ, Lee JH, Kim BR, Kang S, Dong SM, Park MS, et al. Anti-angiogenic effects of Thioridazine involving the FAK-mTOR pathway. Microvasc Res. 2012; 84(3):227-34. [DOI:10.1016/j.mvr.2012.09.006] [PMID]
16. Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ et al. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis. 2012;17(9):989-97. [DOI:10.1007/s10495-012-0717-2] [PMID] [PMCID]
17. Mu J, Xu H, Yang Y, Huang W, Xiao J, Li M, et al. Thioridazine, an antipsychotic drug, elicits potent antitumor effects in gastric cancer. Oncol Rep. 2014;31(5):2107-14. [DOI:10.3892/or.2014.3068] [PMID]
18. Strobl JS, Kirkwood KL, Lantz TK, Lewine MA, Peterson VA, 3rd Worley JF. Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and Thioridazine. Cancer Res. 1990;50(17):5399-405.
19. Rho SB, Kim BR, Kang S. A gene signature-based approach identifies Thioridazine as an inhibitor of phosphatidylinositol-3'-kinase (PI3K)/AKT pathway in ovarian cancer cells. Gynecol Oncol. 2011;120(1):121-7. [DOI:10.1016/j.ygyno.2010.10.003] [PMID]
20. Spengler G, Csonka A, Molnar J, Amaral L. The anticancer activity of the old neuroleptic phenothiazine-type drug Thioridazine. Anticancer Res. 2016;36(11):5701-5706. [DOI:10.21873/anticanres.11153] [PMID]
21. Meng Q, Sun X, Wang J, Wang Y, Wang L. The important application of Thioridazine in the endometrial cancer. Am J Transl Res. 2016;8(6):2767-2775.
22. Yue H, Huang D, Qin L, Zheng Z, Hua L, Wang G, et al. Targeting lung cancer stem cells with antipsychological drug Thioridazine. Biomed Res Int. 2016;2016:6709828. [DOI:10.1155/2016/6709828] [PMID] [PMCID]
23. Shen J, Ma B, Zhang X, Sun X, Han J, Wang Y, et al. Thioridazine has potent antitumor effects on lung cancer stem-like cells. Oncol Lett. 2017;13(3):1563-1568. [DOI:10.3892/ol.2017.5651] [PMID] [PMCID]
24. Zhang C, Gong P, Liu P, Zhou N, Zhou Y, Wang Y. Thioridazine elicits potent antitumor effects in colorectal cancer stem cells. Oncol Rep. 2017;37(2):1168-1174. [DOI:10.3892/or.2016.5313] [PMID]
25. Zainodini N, Hassanshahi G, Hajizadeh M, Khanamani Falahati-Pour S, Mahmoodi M, Mirzaei MR. Nisin Induces Cytotoxicity and Apoptosis in Human Asterocytoma Cell Line (SW1088). Asian Pac J Cancer Prev. 2018;19(8): 2217-2222.
26. Cheng HW, Liang YH, Kuo YL, Chuu CP, CY Lin, MH Lee, et al. Identification of Thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6(5):e1753. [DOI:10.1038/cddis.2015.77] [PMID] [PMCID]
27. Chan Y. Biostatistics102: Quantitative Data - Parametric & Non-parametric Tests. Singapore Med J. 2003; 44:391-6.
28. Dawood RM, Salum GM, Abdelhafez TH, El Shenawy R, Ibrahim NE, El Awady MK. Safety and tolerability of mice to repeated subcutaneous injections of a peptide mix as a potential vaccine against HCV infection. Hum Antibodies. 2019;27(2):105-110. [DOI:10.3233/HAB-180354] [PMID]
29. Omran MH, Fotouh BE, Youssef SS, Ibrahim NE, Nabil W, Mahdy EM, et al. Association between low molecular polypeptide 7 single nucleotide polymorphism and response to therapy in hepatitis C virus infection. World J Hepatol. 2013;5(3):97-103. [DOI:10.4254/wjh.v5.i3.97] [PMID] [PMCID]
30. Shaker O, Mahfouz H, Salama A, Medhat E. Long Non-Coding HULC and miRNA-372 as Diagnostic Biomarkers in Hepatocellular Carcinoma patients. Reports of Biochemistry & Molecular Biology. 2020; 9(2):230-240. [DOI:10.29252/rbmb.9.2.230] [PMID] [PMCID]
31. Schnipper LE, Davidson NE, Wollins DS, Tyne C, Blayney DW, Blum D. American Society of Clinical Oncology Statement: A Conceptual Framework to Assess the Value of Cancer Treatment Options. J Clin Oncol. 2015;33(23):2563-77. [DOI:10.1200/JCO.2015.61.6706] [PMID] [PMCID]
32. Preet S, Bharati S, Panjeta A, Tewari R and Rishi P. Effect of Nisin and doxorubicin on DMBA-induced skin carcinogenesis - a possible adjunct therapy. Tumor Biol. 2015;36(11):8301-8. [DOI:10.1007/s13277-015-3571-3] [PMID]
33. Jiang X, Chen Z, Shen G, Jiang Y, L W, Xue Li, et al. Psychotropic agent Thioridazine elicits potent in vitro and in vivo anti-melanoma effects. Biomed Pharmacother. 2018;97:833-837. [DOI:10.1016/j.biopha.2017.11.012] [PMID]
34. Goyette MA, Cusseddu R, Elkholi I, Abu-Thuraia A, El-Hachem N, Haibe-Kains B, et al. AXL knockdown gene signature reveals a drug repurposing opportunity for a class of antipsychotics to reduce growth and metastasis of triple-negative breast cancer. Oncotarget. 2019;10(21):2055-2067. [DOI:10.18632/oncotarget.26725] [PMID] [PMCID]
35. Kim J, Kim J, Bae JS. ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp Molec Med. 2016;48(11):e269. [DOI:10.1038/emm.2016.119] [PMID] [PMCID]
36. Ding YW, Zhao GJ, Li XL, Hong GL, Li MF, Qiu QM, et al. SIRT1 exerts protective effects against paraquat-induced injury in mouse type II alveolar epithelial cells by deacetylating NRF2 in vitro. Int J Mol Med. 2016;37(4):1049-58. [DOI:10.3892/ijmm.2016.2503] [PMID]
37. Qiao YQ, Jiang PF, Gao YZ. Lutein prevents osteoarthritis through Nrf2 activation and downregulation of inflammation. Arch Med Sci. 2018;14(3):617-624. [DOI:10.5114/aoms.2016.59871] [PMID] [PMCID]
38. van der Wijst MG, Huisman C, Mposhi A, Roelfes G, Rots MG. Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol Oncol. 2015;9(7):1259-73. [DOI:10.1016/j.molonc.2015.03.003] [PMID] [PMCID]
39. Salminen A, Kaarniranta K, Kauppinen A. Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process. Int J Mol Sci. 2013; 14(2):3834-3859. [DOI:10.3390/ijms14023834] [PMID] [PMCID]
40. Yong M, Yu T, Tian S, Liu S, Xu J, Hu J and Hu L. DR2 blocker Thioridazine: A promising drug for ovarian cancer therapy. Oncol Lett. 2017; 14(6):8171-8177. [DOI:10.3892/ol.2017.7184] [PMID] [PMCID]
41. Miyamoto KN, Monteiro KM, da Silva Caumo K, Lorenzatto KR, Ferreira HB and Brandelli A. Comparative proteomic analysis of Listeria monocytogenes ATCC 7644 exposed to a sublethal concentration of Nisin. J. Proteomics. 2015; 119:230-237. [DOI:10.1016/j.jprot.2015.02.006] [PMID]
42. Sampat KR and O'Neil B. Antiangiogenic therapies for advanced hepatocellular carcinoma. Oncologist. 2013; 18(4): 430-8. [DOI:10.1634/theoncologist.2012-0388] [PMID] [PMCID]
43. Yin T, He S, Shen G, Ye T, Guo F and Wang Y. Dopamine receptor antagonist Thioridazine inhibits tumor growth in a murine breast cancer model. Mol Med Rep. 2015; 12:4103-8. [DOI:10.3892/mmr.2015.3967] [PMID] [PMCID]
44. Byun HJ, Lee JH, Kim BR, Kang S, Dong SM, Park MS, Lee SH, Park SH and Rho SB. Anti-angiogenic effects of Thioridazine involving the FAK mTOR pathway. Microvasc Res. 2012; 84(2012): 227 234. [DOI:10.1016/j.mvr.2012.09.006] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb