Volume 10, Issue 2 (Vol.10 No.2 Jul 2021)                   rbmb.net 2021, 10(2): 266-279 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousef Selim N, Farag Mannaa H, Atef Sharaki O, Zaytoun T, Elkholy N, Arafat W. Highlighting Levels of Indoxyl Sulphate among Critically Ill Patients with Acute Nephrotoxicity; Correlations Between Indoxyl Sulphate Levels and Patients’ Characteristics. rbmb.net. 2021; 10 (2) :266-279
URL: http://rbmb.net/article-1-641-en.html
Medical Biochemistry Department, Faculty of Medicine, University of Alexandria, Egypt.
Abstract:   (691 Views)
Background: Many animal studies suggested that the uremic toxin indoxyl sulphate can add to renal damage following induced nephrotoxicity and this effect has not been proved in patients with such complication. Methods: This is a prospective, case-control, and an observational study conducted on 74 critically ill patients with acute nephrotoxicity. It was designed to measure serum levels of indoxyl sulphate on the day of enrollment and over the course of their illness using high performance liquid chromatography (HPLC-UV) and to test the correlation between these levels and patient’s demographics, clinical characteristics, physiological variables, and their outcomes.

Results: Critically ill patients with acute nephrotoxicity had significantly higher total (tIS) and free (fIS) indoxyl sulphate than healthy controls and significantly lower than patients with end-stage renal disease (ESRD). Although, no correlation was found between tIS or fIS and mortality, among survivors, tIS, fIS, creatinine and eGFR were independently associated with no renal recovery.

Conclusions: Serum indoxyl sulphate levels were elevated in critically ill patients with acute nephrotoxicity. There is an association between high levels of indoxyl sulphate and no renal-recovery outcome among survivors of acute nephrotoxicity. Early removal of indoxyl sulphate from patients’ blood may improve their outcomes.
Full-Text [PDF 508 kb]   (343 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/01/14 | Accepted: 2021/04/18 | Published: 2021/08/26

1. Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613-21. [DOI:10.1111/j.1523-1755.2004.00927.x] [PMID]
2. Patzer L. Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol. 2008;23(12):2159-73. [DOI:10.1007/s00467-007-0721-x] [PMID] [PMCID]
3. Jha C, Kamath SU, Dash S, Attur RP, Ramachandra L, Kallya RS. Ischemia-Modified Albumin, Creatinine, And Paraoxonase-1 Levels in Serum of Patients Undergoing Intravenous Contrast-Enhanced Computed Tomography and Its Association with Contrast-Induced Nephropathy. Rep Biochem Mol Biol. 2019;8(1):72-78.
4. Howse ML, Bell GM. Drugs and toxins that damage the kidney. Medicine. 2007;35(7):399- 403. [DOI:10.1016/j.mpmed.2007.04.002]
5. Herget-Rosenthal S, Glorieux G, Jankowski J, Jankowski V. Uraemic toxins in acute kidney injury. Semin Dial. 2009:22(4);445-8. [DOI:10.1111/j.1525-139X.2009.00598.x] [PMID]
6. Chawla LS. Acute kidney injury leading to chronic kidney disease and long-term outcomes of acute kidney injury: The best opportunity to mitigate acute kidney injury?. Contrib Nephrol. 2011;174:182-190. [DOI:10.1159/000329396] [PMID]
7. Okusa MD. The changing pattern of acute kidney injury: from one to multiple organ failure. Contrib Nephrol. 2010;165:153-158. [DOI:10.1159/000313754] [PMID]
8. Schrier RW, Wang W, Pool B, Mitra A. Acute renal failure: definition, diagnosis, pathogenesis, and therapy. J Clin Invest. 2004;114(1):5-14. [DOI:10.1172/JCI200422353] [PMID] [PMCID]
9. Devarajan P. Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology (Carlton). 2010;15(4):419-28. [DOI:10.1111/j.1440-1797.2010.01317.x] [PMID]
10. Soto K1, Coelho S, Rodrigues B, Martins H, Frade F, Lopes S, et al. Cystatin C as a marker of acute kidney injury in the emergency department. Clin J Am Soc Nephrol. 2010;5:1745-54. [DOI:10.2215/CJN.00690110] [PMID] [PMCID]
11. Bennett MR, Ravipati N, Ross G, Nguyen MT, Hirsch R, Beekman RH, et al. Using proteomics to identify preprocedural risk factors for contrast induced nephropathy. Proteomics Clin Appl. 2008;2(7-8):1058-1064. [DOI:10.1002/prca.200780141] [PMID] [PMCID]
12. Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2008;73(4):465-72. [DOI:10.1038/sj.ki.5002721] [PMID]
13. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70:199-203. [DOI:10.1038/sj.ki.5001527] [PMID]
14. Hoste EA, Kellum JA. RIFLE criteria provide robust assessment of kidney dysfunction and correlate with hospital mortality. Crit Care Med. 2006;34(7):2016-7. [DOI:10.1097/01.CCM.0000219374.43963.B5] [PMID]
15. Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P, et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934-43. [DOI:10.1046/j.1523-1755.2003.00924.x] [PMID]
16. Duranton F, Cohen G, Smet RD, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258-70. [DOI:10.1681/ASN.2011121175] [PMID] [PMCID]
17. Leong SC, Sirich TL. Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies. Toxins (Basel). 2016;8(12):358. [DOI:10.3390/toxins8120358] [PMID] [PMCID]
18. Pretorius CJ, McWhinney BC, Sipinkoski B, Johnson LA, Rossi M, Campbell KL, et al. Reference ranges and biological variation of free and total serum indoxyl- and p-cresyl sulphate measured with a rapid UPLC fluorescence detection method. Clin Chim Acta. 2013;419:122-126. [DOI:10.1016/j.cca.2013.02.008] [PMID]
19. Viaene L, Thijs L, Jin Y, Liu Y, Gu Y, Meijers B, et al. Heritability and clinical determinants of serum indoxyl sulphate and p-cresyl sulphate, candidate biomarkers of the human microbe enterotype. PloS ONE. 2014;9(5):e79682. [DOI:10.1371/journal.pone.0079682] [PMID] [PMCID]
20. Lisowska-Myjak B. Serum and urinary biomarkers of acute kidney injury. Blood Purif. 2010;29(4):357-65. [DOI:10.1159/000309421] [PMID]
21. Taylor J. Acute kidney injury. Health Service Journal. 2011.
22. Talaat A, Elshahawy E, El- Hammady A, El- Assal M, Abdullah S. Epidemiology, clinical characteristics and outcome of acute kidney injury in intensive care units in Egyptian patients. Life Science Journal. 2014;11(7):220-224.
23. Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract. 2014;128(3-4):303-11. [DOI:10.1159/000369817] [PMID]
24. Nataatmadja M, Cho Y, Campbell K, Johnson DW. The Roles of Indoxyl Sulphate and p-Cresyl Sulphate in Patients with Chronic Kidney Disease: A Review of Therapeutic Options. Chronic kidney disease.
25. Bartreto FC, Barreto DV, Liabeuf S, Meert N, Glorieuxet G, Temmar M, et al. Serum indoxyl sulphate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009;4(10):1551-8. [DOI:10.2215/CJN.03980609] [PMID] [PMCID]
26. Wei Q, Xiao X, Fogle P, Dong Z. Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion. PLoS One. 2014,9(9):e106647. [DOI:10.1371/journal.pone.0106647] [PMID] [PMCID]
27. Zgoda-Pols JR, Chowhury S, Wirth M, Milburn MV, Alexander DC, Alton KB. Metabolomics analysis reveals elevation of 3-indoxyl sulphate in plasma and brain during chemically-induced acute kidney injury in mice: Investigations of nicotininc acid receptor agonists. Toxicol Appl Pharmacol. 2011;255(1):48-56. [DOI:10.1016/j.taap.2011.05.015] [PMID]
28. Shen WC, Liang CJ, Huang TM, Liu CW, Wang SH, Young GH, et al. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS/MAPKs/NFκB/AP-1 pathway. Arch Toxicol. 2016;90(11):2779-2792. [DOI:10.1007/s00204-015-1652-0] [PMID]
29. Shu C, Chen X, Xia T, Zhang F, Gao S, Chen W. LC-MS/MS method for simultaneous determination of serum p-cresyl sulphate and indoxyl sulphate in patients undergoing peritoneal dialysis. Biomed Chromatogr. 2016;30:1782-1788. [DOI:10.1002/bmc.3753] [PMID]
30. Arund J, Tanner R, Uhlin F, Fridolin I. Do only small uremic toxins, chromophores, contribute to the online dialysis dose monitoring by UV absorbance?. Toxins (Basel). 2012,4(10):849-861. [DOI:10.3390/toxins4100849] [PMID] [PMCID]
31. Lin CJ, Wu CJ, Pan CF, Chen YC, Sun FJ, Chen HH. Serum concentration of p-cresol and indoxyl sulfate in elderly hemodialysis patients. International Journal of Gerontology. 2011;5(2):80-83. [DOI:10.1016/j.ijge.2011.04.010]
32. Veldman L, Vanmassenhove J, Van Biesen W, Massy ZA, Liabeuf S, Glorieux G, et al. Evolution of protein-bound uremic toxins indoxyl sulphate and p-cresyl sulate in acute kidney injury. Int Urol Nephrol. 2019;51(2):293-302. [DOI:10.1007/s11255-018-2056-x] [PMID]
33. Ali T, Khan I, Simpson W, Prescott G, Townend J, Smith W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007;18(4):1292-8. [DOI:10.1681/ASN.2006070756] [PMID]
34. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813-8. [DOI:10.1001/jama.294.7.813] [PMID]
35. Thakar CV, Christianson A, Freyberg R, Almenoff P, Render ML. Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Admistiration study. Crit Care Med. 2009;37(9):2552-8. [DOI:10.1097/CCM.0b013e3181a5906f] [PMID]
36. Wu W, Hsu KH, Lee CC, Sun CY, Hsu HJ, Tsai CJ, et al. P-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26(3):938-47. [DOI:10.1093/ndt/gfq580] [PMID] [PMCID]
37. Lida S, Kohono K, Yoshimora J, Ueda S, Usui M, Miyazaki H, et al. Carbonic-adsorbent AST-120 reduces overload of indoxyl sulphate and the plasma level of TGF-beta1 in patients with chronic renal failure. Clin Exp Nephrol. 2006;10(4):262-7. [DOI:10.1007/s10157-006-0441-8] [PMID]
38. Akizawa T, Asano Y, Morita S, Wakita T, Onishi Y, Fukuhara S, et al. Effect of carbonaceous oral adsorbent on the progression of CKD: a multicenter, randomized, controlled trial. Am J Kidney Dis. 2009;54(3):459- 467. [DOI:10.1053/j.ajkd.2009.05.011] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb