Volume 10, Issue 2 (Vol.10 No.2 Jul 2021)                   rbmb.net 2021, 10(2): 288-301 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahrami M, Ghazavi A, Ganji A, Mosayebi G. Anti-Inflammatory Activity of S. Marianum and N. Sativa Extracts on Macrophages. rbmb.net. 2021; 10 (2) :288-301
URL: http://rbmb.net/article-1-661-en.html
Molecular and Medicine Research Center, Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
Abstract:   (714 Views)
Background: Nigella sativa (N. sativa) and Silybum marianum (S. marianum) are used to regulate macrophage polarization in lipopolysaccharide-induced RAW 264.7 cells and thioglycollate-elicited peritoneal inflammation.

Methods: Cytotoxicity assays and acute toxicity tests were performed to investigate the safe dose and toxicity of the prepared extracts. Also, nitric oxide production was determined by Griess assay on RAW264.7 and peritoneal macrophage supernatants. After RNA extraction from macrophages, real-time PCR was performed to measure the relative gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, transforming growth factor (TGF)-β, and IL-10. Finally, regulatory T cells (Treg cells) were counted by flow cytometry.

Results: S. marianum methanolic extract (SME), N. sativa ethanolic extract (NEE), and their mixture (SME+NEE) decreased NO levels significantly in RAW264.7 and peritoneal murine macrophages. N. sativa ethanolic extract significantly increased IL-10 gene expression and significantly decreased IL-6 and TNF-α expression in RAW264.7 cells. In mixture-treated peritoneal macrophages, IL-10 and TGF-β expression were significantly increased, while IL-6 and TNF-α were significantly decreased. Also, the percentage of Treg cells was significantly greater in the mixture-treated cells than in controls.

Conclusions: These results suggest that an SME and NEE mixture has anti-inflammatory and immunomodulatory activities and may be useful in the treatment of diseases of immunopathologic origin characterized by macrophage hyperactivation.
Full-Text [PDF 811 kb]   (348 Downloads)    
Type of Article: Original Article | Subject: Immunology
Received: 2021/02/22 | Accepted: 2021/04/18 | Published: 2021/08/26

References
1. Hashiguchi A, Hitachi K, Zhu W, Tian J, Tsuchida K, Komatsu S. Mung bean (Vigna radiata (L.)) coat extract modulates macrophage functions to enhance antigen presentation: A proteomic study. J Proteomics. 2017;161:26-37. [DOI:10.1016/j.jprot.2017.03.025] [PMID]
2. Kumar V, Abbas AK, Fausto N, Aster JC. Robbins and Cotran pathologic basis of disease. elsevier health sciences; 2014.
3. Ajayi AM, de Oliveira Martins DT, Balogun SO, de Oliveira RG, Ascêncio SD, Soares IM, et al. Ocimum gratissimum L. leaf flavonoid-rich fraction suppress LPS-induced inflammatory response in RAW 264.7 macrophages and peritonitis in mice. Journal of ethnopharmacology. 2017;204:169-178. [DOI:10.1016/j.jep.2017.04.005] [PMID]
4. Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev. 2014;8(16):73-80. [DOI:10.4103/0973-7847.134229] [PMID] [PMCID]
5. Esmaeil N, Anaraki SB, Gharagozloo M, Moayedi B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int Immunopharmacol. 2017;50:194-201. [DOI:10.1016/j.intimp.2017.06.030] [PMID]
6. El Mezayen R, El Gazzar M, Nicolls MR, Marecki JC, Dreskin SC, Nomiyama H. Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation. Immunol Lett. 2006;106(1):72-81. [DOI:10.1016/j.imlet.2006.04.012] [PMID]
7. Salem ML. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol. 2005;5(13-14):1749-70. [DOI:10.1016/j.intimp.2005.06.008] [PMID]
8. Wianowska D, Wiśniewski M. Simplified procedure of silymarin extraction from Silybum marianum L. Gaertner. Journal of chromatographic science. 2014;53(2):366-72. [DOI:10.1093/chromsci/bmu049] [PMID]
9. Koshak AE, Yousif NM, Fiebich BL, Koshak EA, Heinrich MJFiP. Comparative Immunomodulatory Activity of Nigella sativa L. Preparations on Proinflammatory Mediators: A Focus on Asthma. 2018;9:1075. [DOI:10.3389/fphar.2018.01075] [PMID] [PMCID]
10. Patel S, Gheewala N, Suthar A, Shah A. In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. International journal of pharmacy and pharmaceutical sciences. 2009;1(1):38-46.
11. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126(1):131-8. [DOI:10.1016/0003-2697(82)90118-X]
12. Jalalvand M, Shahsavari G, Mosayebi G. The Inhibitory Effect of Satureja khozestanica Essential Oil and Carvacrol on Nitric Oxide Production in Macrophage Cell Line. 2014;16(3):31-46.
13. Li Q, Dong D-D, Huang Q-P, Li J, Du Y-Y, Li B, et al. The anti-inflammatory effect of Sonchus oleraceus aqueous extract on lipopolysaccharide stimulated RAW 264.7 cells and mice. 2017;55(1):799-809. [DOI:10.1080/13880209.2017.1280514] [PMID] [PMCID]
14. Soufy NI. Hepatoprotective and antioxidant effects of Silybum marianum plant against hepatotoxicity induced by carbon tetrachloride in rats. Journal of American Science. 2012;8(4):479-86.
15. Vahdati-Mashhadian N, Rakhshandeh H, Omidi A. An investigation on LD50 and subacute hepatic toxicity of Nigella sativa seed extracts in mice. Pharmazie. 2005;60(7):544-7.
16. Noel PR, Barnett KC, Davies RE, Jolly DW, Leahy JS, Mawdesley-Thomas LE, et al. The toxicity of dimethyl sulphoxide (DMSO) for the dog, pig, rat and rabbit. Toxicology. 1975;3(2):143-69. [DOI:10.1016/0300-483X(75)90081-5]
17. Xu T, Qiao J, Zhao L, He G, Li K, Wang J, et al. Effect of dexamethasone on acute respiratory distress syndrome induced by the H5N1 virus in mice. Eur Respir J. 2009;33(4):852-60. [DOI:10.1183/09031936.00130507] [PMID]
18. OECD (2002), Test No. 423: Acute Oral toxicity- Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264071001-en [DOI:10.1787/9789264071001-en.]
19. Lam D, Harris D, Qin Z. Inflammatory mediator profiling reveals immune properties of chemotactic gradients and macrophage mediator production inhibition during thioglycollate elicited peritoneal inflammation. Mediators Inflamm. 2013;2013:931562. [DOI:10.1155/2013/931562] [PMID] [PMCID]
20. Zhang X, Gonçalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol. 2008;chapter 14:Unit 14.1. [DOI:10.1002/0471142735.im1401s83] [PMID] [PMCID]
21. Larsen GL, Henson PM. Mediators of inflammation. Annual review of immunology. 1983;1:335-59. [DOI:10.1146/annurev.iy.01.040183.002003] [PMID]
22. Gholamnezhad Z, Keyhanmanesh R, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory aspects of Nigella sativa for its preventive and bronchodilatory effects on obstructive respiratory diseases: A review of basic and clinical evidence. Journal of Functional Foods. 2015;17:910-927. [DOI:10.1016/j.jff.2015.06.032]
23. Gharagozloo M, Jafari S, Esmaeil N, Javid EN, Bagherpour B, Rezaei A. Immunosuppressive Effect of Silymarin on Mitogen‐Activated Protein Kinase Signalling Pathway: the Impact on T Cell Proliferation and Cytokine Production. Basic Clin Pharmacol Toxicol. 2013;113(3):209-14. [DOI:10.1111/bcpt.12088] [PMID]
24. Majdalawieh AF, Hmaidan R, Carr RI. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J Ethnopharmacol. 2010;131(2):268-75. [DOI:10.1016/j.jep.2010.06.030] [PMID]
25. Liu Y, Su W-W, Wang S, Li P-B. Naringin inhibits chemokine production in an LPS‑induced RAW 264.7 macrophage cell line. Mol Med Rep. 2012;6(6):1343-50. [DOI:10.3892/mmr.2012.1072] [PMID]
26. Baatar D, Siddiqi MZ, Im WT, Ul Khaliq N, Hwang SG. Anti-inflammatory effect of ginsenoside Rh2-mix on lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J Med Food. 2018;21(10):951-960. [DOI:10.1089/jmf.2018.4180] [PMID]
27. Cho BO, So Y, Jin CH, Nam BM, Yee S-T, Jeong IY. 3-deoxysilybin exerts anti-inflammatory effects by suppressing NF-κB activation in lipopolysaccharide-stimulated RAW264. 7 macrophages. Biosci Biotechnol Biochem. 2014;78(12):2051-8. [DOI:10.1080/09168451.2014.948377] [PMID]
28. Wilkins R, Tucci M, Benghuzzi H. The effects of egcg and tq on inflammatory mediator production in raw 264.7 cells challenged with LPS-biomed 2010. Biomed Sci Instrum. 2010;46:208-13.
29. Tabasi N, Mahmoudi M, Rastin M, Sadeghnia HR, HosseinPour Mashhadi M, Zamani Taghizade Rabe S, et al. Cytotoxic and apoptogenic properties of Nigella sativa and thymoquinone, its constituent, in human renal cell carcinoma are comparable with cisplatin. Food and agricultural immunology. 2015;26(1):138-56. [DOI:10.1080/09540105.2013.878899]
30. Bahmani M, Shirzad H, Rafieian S, Rafieian-Kopaei M. Silybum marianum: beyond hepatoprotection. J Evid Based Complementary Altern Med. 2015;20(4):292-301. [DOI:10.1177/2156587215571116] [PMID]
31. Hajhashemi V, Ghannadi A, Jafarabadi H. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytother Res. 2004;18(3):195-9. [DOI:10.1002/ptr.1390] [PMID]
32. Hossen MJ, Yang WS, Kim D, Aravinthan A, Kim J-H, Cho JY. Thymoquinone: an IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Sci Rep. 2017;7:42995. [DOI:10.1038/srep42995] [PMID] [PMCID]
33. Miliani M, Nouar M, Paris O, Lefranc G, Mennechet F, Aribi M. Thymoquinone Potently Enhances the Activities of Classically Activated Macrophages Pulsed with Necrotic Jurkat Cell Lysates and the Production of Antitumor Th1-/M1-Related Cytokines. J Interferon Cytokine Res. 2018;38(12):539-551. [DOI:10.1089/jir.2018.0010] [PMID]
34. Youn CK, Park SJ, Lee MY, Cha MJ, Kim OH, You HJ, et al. Silibinin inhibits LPS-induced macrophage activation by blocking p38 MAPK in RAW 264.7 cells. Biomol Ther (Seoul). 2013;21(4):258-263. [DOI:10.4062/biomolther.2013.044] [PMID] [PMCID]
35. Kang JS, Jeon YJ, Kim HM, Han SH, Yang K-H. Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J Pharmacol Exp Ther. 2002;302(1):138-44. [DOI:10.1124/jpet.302.1.138] [PMID]
36. Tong W, Zhang C, Hong T, Liu D, Wang C, Li J, et al. Silibinin alleviates inflammation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes and has a therapeutic effect on arthritis in rats. Sci Rep. 2018;8:3241. [DOI:10.1038/s41598-018-21674-6] [PMID] [PMCID]
37. Boskabady MH, Jalali S. Effect of carvacrol on tracheal responsiveness, inflammatory mediators, total and differential WBC count in blood of sensitized guinea pigs. Exp Biol Med (Maywood). 2013;238(2):200-8. [DOI:10.1177/1535370212474604] [PMID]
38. El-Dakhakhny M, Madi N, Lembert N, Ammon H. Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats. J Ethnopharmacol. 2002;81(2):161-4. [DOI:10.1016/S0378-8741(02)00051-X]
39. Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res. 2000;14(5):323-8. https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q [DOI:10.1002/1099-1573(200008)14:53.0.CO;2-Q]
40. Hussein MM, Ahmed MM. The Th1/Th2 paradigm in lambda cyhalothrin-induced spleen toxicity: the role of thymoquinone. Environ Toxicol Pharmacol. 2016;41:14-21. [DOI:10.1016/j.etap.2015.11.008] [PMID]
41. Wilkins R, Tucci M, Benghuzzi H. The effects of sustained delivery of antioxidants on LPS stimulated raw 264.7 macrophages. Journal of the Mississippi Academy of Sciences. 2014;59:287-92.
42. Adhikari M, Arora R. The flavonolignan‐silymarin protects enzymatic, hematological, and immune system against γ‐radiation‐induced toxicity. Environ Toxicol. 2016;31(6):641-54. [DOI:10.1002/tox.22076] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb