Volume 10, Issue 4 (Vol.10 No.4 Jan 2022)                   rbmb.net 2022, 10(4): 711-721 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Agnihotri S K, Kumar B, Jain A, Anjali A, Negi M P S, Sachan R, et al . Clinical Significance of Circulating Serum Levels of sCD95 and TNF-α in Cytoprotection of Cervical Cancer. rbmb.net 2022; 10 (4) :711-721
URL: http://rbmb.net/article-1-673-en.html
Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India & Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
Abstract:   (2305 Views)
Background: This study correlates the serum levels of sCD95 & TNF-α with a simple cell-based assay to evaluate the capacity of the serum sample to induce apoptosis in Jurkat cells. Interlinking of these parameters can be explored to design a minimum invasive diagnostic strategy for cervical cancer (CC).

Methods: Sera samples were assessed to induce apoptosis in Jurkat cells through FACS. Serum levels of sCD95 and TNF-α were measured by ELISA. JNK phosphorylation was evaluated in sera incubated Jurkat cells. Data was scrutinized through statistical analysis.

Results: Significantly higher serum levels of sCD95 and lower TNF-α levels were observed in CC patients; their sera samples inhibited induction of apoptosis in Jurkat cells through reduced JNK phosphorylation. Statistical analysis linked these three parameters for the early screening of CC.

Conclusions: Distinct sera levels of sCD95 & TNF-α in CC patients showed an anti-apoptotic effect, which can be considered for early detection of CC.
Full-Text [PDF 401 kb]   (1103 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/03/16 | Accepted: 2021/05/1 | Published: 2022/02/7

References
1. Danial NN, Korsmeyer SJ. Cell Death: Critical Control Points. Cell. 2004;116(2):205-19. [DOI:10.1016/S0092-8674(04)00046-7]
2. Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res. 2000 Apr;256(1):58-66. [DOI:10.1006/excr.2000.4840]
3. Jodo S, Kobayashi S, Kayagaki N, Ogura N, Feng Y, Amasaki Y, et al. Serum levels of soluble Fas/APO-1 (CD95) and its molecular structure in patients with systemic lupus erythematosus (SLE) and other autoimmune diseases. Clin Exp Immunol. 1997;107(1):89-95. [DOI:10.1046/j.1365-2249.1997.d01-901.x]
4. Townson JL, Naumov GN, Chambers AF. The role of apoptosis in tumor progression and metastasis. Curr Mol Med. 2003 Nov;3(7):631-42. [DOI:10.2174/1566524033479483]
5. Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol. 2002;71(6):907-20.
6. Liu ZG, Hsu H, Goeddel D V., Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell. 1996;87(3):565-76. [DOI:10.1016/S0092-8674(00)81375-6]
7. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet. 1999;33:29-55. [DOI:10.1146/annurev.genet.33.1.29]
8. Chang HY, Yang X, Baltimore D. Dissecting Fas signaling with an altered-specificity death-domain mutant: Requirement of FADD binding for apoptosis but not Jun N-terminal kinase activation. Proc Natl Acad Sci USA. 1999;96(4):1252-6. [DOI:10.1073/pnas.96.4.1252]
9. Kondera-Anasz Z, Mielczarek-Palacz A, Sikora J. Soluble Fas receptor and soluble Fas ligand in the serum of women with uterine tumors. Apoptosis. 2005;10(5):1143-9. [DOI:10.1007/s10495-005-1018-9]
10. Suda T, Nagata S. Purification and characterization of the fas-ligand that induces apoptosis. J Exp Med. 1994;179(3):873-9. [DOI:10.1084/jem.179.3.873]
11. Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C, et al. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem. 1992;267(15):10709-15. [DOI:10.1016/S0021-9258(19)50076-X]
12. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991;66(2):233-43. [DOI:10.1016/0092-8674(91)90614-5]
13. Alderson MR, Tough TW, Davis-Smith T, Braddy S, Falk B, Schooley KA, et al. Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med. 1995;181(1):71-7. [DOI:10.1084/jem.181.1.71]
14. Mizutani Y, Yoshida O, Bonavida B. Prognostic significance of soluble Fas in the serum of patients with bladder cancer. J Urol. 1998;160(2):571-6. [DOI:10.1016/S0022-5347(01)62960-4]
15. Ueno T, Toi M, Tominaga T. Circulating soluble Fas concentration in breast cancer patients. Clin Cancer Res. 1999;5(11):3529-33.
16. Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K, et al. Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem. 2000;275(34):26576-81. [DOI:10.1074/jbc.M003412200]
17. Wentzensen N, Von Knebel Doeberitz M. Biomarkers in cervical cancer screening. Dis Markers. 2007;23(4):315-30. [DOI:10.1155/2007/678793]
18. Lettini AA, Guidoboni M, Fonsatti E, Anzalone L, Cortini E, Maio M. Epigenetic remodelling of DNA in cancer. Histol Histopathol. 2007;22(10-12):1413-24.
19. Syrjänen KJ. Spontaneous evolution of intraepithelial lesions according to the grade and type of the implicated human papillomavirus (HPV). Eur J Obstet Gynecol Reprod Biol. 1996;65(1):45-53. [DOI:10.1016/0028-2243(95)02303-A]
20. Kanamoto T, Mota M, Takeda K, Rubin LL, Miyazono K, Ichijo H, et al. Role of apoptosis signal-regulating kinase in regulation of the c-Jun N-terminal kinase pathway and apoptosis in sympathetic neurons. Mol Cell Biol. 2000;20(1):196-204. [DOI:10.1128/MCB.20.1.196-204.2000]
21. Zur Hausen H. Papillomaviruses and cancer: From basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342-50. [DOI:10.1038/nrc798]
22. Bosch FX, De Sanjosé S. The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers. 2007;23(4):213-27. [DOI:10.1155/2007/914823]
23. Walboomers J, Jacobs M, Manos M, Bosch F, Kummer J, Shah K, et al. Human Papillomavirus Is a Necessary Cause. J Pathol. 1999;189:12-9. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F [DOI:10.1002/(SICI)1096-9896(199909)189:13.0.CO;2-F]
24. Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem. 2001;276(49):46639-46. [DOI:10.1074/jbc.M105102200]
25. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005;118(2):265-7. [DOI:10.1242/jcs.01610]
26. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994;76(6):959-62. [DOI:10.1016/0092-8674(94)90372-7]
27. Aguilar-Lemarroy A, Romero-Ramos JE, Olimon-Andalon V, Hernandez-Flores G, Lerma-Diaz JM, Ortiz-Lazareno PC, et al. Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer. BMC Cancer. 2008;8:1-12. [DOI:10.1186/1471-2407-8-99]
28. Vejda S, Posovszky C, Zelzer S, Peter B, Bayer E, Gelbmann D, et al. Plasma from cancer patients featuring a characteristic protein composition mediates protection against apoptosis. Mol Cell Proteomics. 2002;1(5):387-93. [DOI:10.1074/mcp.M200004-MCP200]
29. Midis GP, Shen Y, Owen-Schaub LB. Elevated soluble Fas (sFas) levels in nonhematopoietic human malignancy. Cancer Res. 1996;56(17):3870-4.
30. Kimura M, Tomita Y, Imai T, Saito T, Katagiri A, Tanikawa T, et al. Significance of serum-soluble CD95 (Fas/APO-1) on prognosis in renal cell cancer patients. Br J Cancer. 1999;80(10):1648-51. [DOI:10.1038/sj.bjc.6690576]
31. Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L, et al. The essential role of MEKK3 in TNF-induced NF-κB activation. Nat Immunol. 2001;2(7):620-4. A [DOI:10.1038/89769]
32. Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity. 2000;12(4):419-29. [DOI:10.1016/S1074-7613(00)80194-6]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb