Volume 10, Issue 3 (Vol.10 No.3 Oct 2021)                   rbmb.net 2021, 10(3): 445-454 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hidayat R, Wulandari P. Effects of Andrographis paniculata (Burm. F.) Extract on Diabetic Nephropathy in Rats. rbmb.net. 2021; 10 (3) :445-454
URL: http://rbmb.net/article-1-689-en.html
Department of Biology, Faculty of Medicine, Universitas Sriwijaya.
Abstract:   (411 Views)
Background: Hyperglycemia and accumulation of advanced glycation end products (AGEs) play a significant role in the development of diabetic nephropathy. Andrographis paniculata (AP) is a plant with high flavonoid content with the potential to suppress oxidative stress activity in cells and tissue. This study was aimed to investigate the role of Andrographis paniculata extract (APE) in protecting kidney damage due to the formation of AGEs in the renal glomerulus in diabetic rats.

Methods: A total of 30 male Sprague Dawley rats were randomly divided into five groups as follows: normal control group, streptozocin (STZ) induced diabetic group, STZ-induced diabetic group with AP extract (100 mg/kg BW), STZ-induced diabetic rats with AP extract (200 mg/kg BW), and STZinduced
diabetic rats with APE (400 mg/ kg BW). Blood glucose levels were measured before treatment and after treatment. Serum and urine parameters were determined. Antioxidant enzymes and lipid peroxide levels were determined in the kidney along with histopathological examination.

Results: The finding of this study showed that treatment APE at the dose of 200 mg/kg and 400 mg/kg ameliorated kidney hypertrophy index. SOD, catalase, and GSH activities significantly decreased in the kidney of STZ-diabetic rats compared to the normal control rats. Treatment with APE
significantly decreased malondialdehyde level at the dose of 200 and 400 mg/kg BW.

Conclusions: This study revealed evidence for improving diabetic retinopathy in male rats treated with Andrographis paniculata extract. APE significantly decreased oxidative stress activities in kidney of diabetic rats.
Full-Text [PDF 353 kb]   (225 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/04/21 | Accepted: 2021/05/23 | Published: 2021/12/5

References
1. Tarigan TJE, Yunir E, Subekti I, Pramono LA, Martina D. Profile and analysis of diabetes chronic complication in outpatient Diabetes Clinic of Cipto Mangunkusumo Hospital, Jakarta. Med J Indo. 2015;24(3):165-70. [DOI:10.13181/mji.v24i3.1249]
2. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. 2018. Complications of diabetes 2017. J Diabetes Res. 2018;3086167. [DOI:10.1155/2018/3086167] [PMID] [PMCID]
3. Schena FP, Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol. 2005;Suppl 1:S30-3. [DOI:10.1681/ASN.2004110970] [PMID]
4. Lim AKH. Diabetic nephropathy-complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361-381. [DOI:10.2147/IJNRD.S40172] [PMID] [PMCID]
5. Tanios BY, Ziyadeh FN. Emerging therapies for diabetic nephropathy patients: beyond blockade of the renin-angiotensin system. Nephron Extra. 2012;2:278-282. [DOI:10.1159/000343312] [PMID] [PMCID]
6. Ilyas Z, Chaiban JT, Krikorian A. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy. Rev Endocr Metab Disord. 2017;18(1):21-28. [DOI:10.1007/s11154-017-9422-3] [PMID]
7. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57:1446-54. [DOI:10.2337/db08-0057] [PMID]
8. Darwish NM, Elnahas YM, AlQahtany FS. Diabetes induced renal complications by leukocyte activation of nuclear factor - and its regulated genes expression. Saudi J Biol Sci. 2020;28(1):541-549. [DOI:10.1016/j.sjbs.2020.10.039] [PMID] [PMCID]
9. Donousi E, Duni A, Leivaditis K, Vaios V, Eleftheriadis T, Liakopoulos V. Improvements in the management of diabetic nephropathy. Rev Diabet Study. 2015;12(1-2):119-33. [DOI:10.1900/RDS.2015.12.119] [PMID] [PMCID]
10. Zhang Z, Jiang J, Yu P, Zeng X, Larrick JW, Wang Y. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment. J Translat Med. 2009;7:62. [DOI:10.1186/1479-5876-7-62] [PMID] [PMCID]
11. Setyaningsih EP, Saputri FC, Mun'im A. The antidiabetic effectivity of Indonesian plants extracts via DPP-IV inhibitory mechanism. J Young Pharmacists. 2019;11(2):161-164. [DOI:10.5530/jyp.2019.11.34]
12. Nugroho AE, Andrie M, Warditiani NK, Siswanto E, Pramono S, Lukitaningsih E. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. F.) Nees and andrographolide in high-fructose-fat-fed rats. Indian J Pharmacol. 2012;44(3):377-81. [DOI:10.4103/0253-7613.96343] [PMID] [PMCID]
13. Wediasari F, Nugroho GA, Fadhilah Z, Elya B, Setiawan H, Mozef T. Hypoglicemic effect of a combined Andrographis paniculata and Caesalpinia sappan extract in streptozocin-induced diabetic rats. Adv Pharmacol Pharm Sci. 2020. [DOI:10.1155/2020/8856129] [PMID] [PMCID]
14. Sari KRP, Sudarsono S, Nugroho AE. Effect of herbal combination of Andrographis paniculata (Burm. F.) Ness and Gynura procumbens (Lour.) Merr ethanolic extracts in alloxan-induced hyperglycemic rats. Int Food Res J. 2015;22(4):1332-1337.
15. Andrade-Cetto A, RubalcabaMares ML. Hypoglycemic effect of the Rhizophora mangle Cortex on STZ-NA induced diabetic rats. Pharmacol online. 2012;3:1-5.
16. King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012;166(3): 877-94. [DOI:10.1111/j.1476-5381.2012.01911.x] [PMID] [PMCID]
17. Nishi AA, Kumar P. Protective effect of chlorogenic acid against diabetic nephropathy in high fat diet/streptozotocin induced type-2 diabetic rats. Int J Pharm Sci. 2013;5:489-95.
18. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement and significance. Am J Clin Nutr. 1993;57(5 Suppl):715S-724S. [DOI:10.1093/ajcn/57.5.715S] [PMID]
19. NIH (National Institute of Health). Principles of laboratory animal care. Bethesda, MD. National Institute of Health, 1985; 1-96.
20. Rocházková D, Bousová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82(4):513-23. [DOI:10.1016/j.fitote.2011.01.018] [PMID]
21. Bastaki S. Diabetes mellitus and its treatment. Int J Diabetes Metab. 2005;13:111-34. [DOI:10.1159/000497580]
22. Nesbitt KN. An overview of diabetic nephropathy. J Pharm Prac.2004;17(1): 75-9. [DOI:10.1177/0897190003261312]
23. Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2008;Chapter 5:Unit 5.47.
24. Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: incorporating a high-fat diet and streptozotocin. Biomed Pharmacother. 2017;95:605-613. [DOI:10.1016/j.biopha.2017.08.098] [PMID]
25. Pooranaperundevi M, Sumiyabanu MS, Viswanathan P, Sundarapandiyan R, Anuradha CV. Insulin resistance induced by a high-fructose diet potentiates thioacetamide hepatotoxicity. Singapore Med J. 2010;51(5):389-98.
26. Akhtar MT, Sarib MSM, Ismail IS, Abas F, Ismail A, Lajis NH, et al. Anti-diabetic activity and metabolic changes induced by Andrographis paniculata plant extract in obese diabetic rats. Molecules. 2016;21(8):1026. [DOI:10.3390/molecules21081026] [PMID] [PMCID]
27. Zafar M, Naqvi SN. Effects of STZ-induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. Int J Morphol. 2010;28(1):135-142. [DOI:10.4067/S0717-95022010000100019]
28. Viswanathan V, Snehalatha C, Kumutha R, Jayaraman M, Ramachandran A. Serum albumin levels in different stages of type 2 diabetic nephropathy patients. Indian J Nephrol. 2004;14:89-92.
29. Balbi ME, Tonn FS, Mendes AM, Borba HH, Wiens A, Llimos FF, et al. Antioxidant effects of vitamins in type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetol Metab Syndr. 2018;10:18. [DOI:10.1186/s13098-018-0318-5] [PMID] [PMCID]
30. Ahmadvand H, Dehnoo MG, Cheraghi R, Rasoulian B, Ezatpour B, Azadpour M, et al. Amelioration of altered serum, liver, and kidney antioxidant enzymes activities by sodium selenite in alloxan-induced diabetic rats. Rep Biochem Mol Bio. 2014;3(1):14-20.
31. Derakhshanian H, Djazayery A, Javanbakht MH, Eshraghian MR, Mirshafiey A, Zarel M, et al. The effect of vitamin D on cellular pathways of diabetic nephropathy. Rep Biochem Mol Bio. 2019;7(2):217-222.
32. Mobasher MA, El-Tantawi HG, El-Said KS. Metformin ameliorates oxidative stress induced by diabetes mellitus and hepatocellular carcinoma in rats. Rep Biochem Mol Bio. 2020;9:115-128. [DOI:10.29252/rbmb.9.1.115] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb