Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 310-319 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zhansaya A, Malika N, Boris D, Kanat T, Kanatbek M, Yerlan R et al . Expression of Recombinant CTLA-4 and PD-L1 Proteins Fused with Thioredoxin, and Determination of Their Ligand-Binding Activities. rbmb.net 2022; 11 (2) :310-319
URL: http://rbmb.net/article-1-882-en.html
National Center for Biotechnology, Kurgalzhyn road, 13/5, Nur-Sultan, 010000, Kazakhstan & L. N. Gumilyov Eurasian National University, Satpayev st., 2, Nur-Sultan, 010008, Kazakhstan.
Abstract:   (1808 Views)
Background: The use of chimeric proteins that selectively interact with various immune cell receptors to treat oncology patients has increased. One effective way to obtain recombinant proteins is to use the E. coli expression system. However, in eukaryotic protein production in E. coli, several
difficulties arise that can be solved by fusing the target protein with thioredoxin. Thioredoxin can enhance solubility, but its large size can lead to an erroneous assessment of protein solubility, folding, and activity. The present study examined the ligand-binding activity of PD-L1, and CTLA-4 receptors
fused with thioredoxin.

Methods: The de novo synthesized genes of the extracellular domains of the PD-L1 and CTLA-4 were cloned into the pET28 and pET32 expression plasmids and used to transform E. coli BL21 cells. Purified recombinant proteins were characterized by western blotting, LC-MS/MS spectrometry, and

Results: Amino acid sequence comparisons of the recombinant proteins obtained by LC-MS/MS with the SwissProt database resulted in the highest comparison scores from 4950 to 13396. The binding efficiencies of recombinant human B7-1 Fc to rCTLA-4 and rTrx-CTLA-4 proteins in ELISA did not
differ significantly. Similar results were obtained with recombinant rhesus monkey PD-1 hFc against rPD-L1 and rTrx-PD-L1.

Conclusions: Recombinant proteins specifically reacted with recombinant human B7-1 Fc and recombinant rhesus monkey PD-1 hFc. The fusion of thioredoxin with recombinant proteins through linkers slightly affected the activity of the extracellular domains of CTLA-4 and PD-L1.
Full-Text [PDF 347 kb]   (1127 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2022/02/17 | Accepted: 2022/02/23 | Published: 2022/08/7

1. Jiawen C, Steven CA, Yinghao W. General principles of binding between cell surface receptors and multispecific ligands: A computational study. PLoS Comput Biol. 2017;13(10):e1005805. [DOI:10.1371/journal.pcbi.1005805] [PMID] [PMCID]
2. Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy Comes of Age. J Clin Oncol. 2011;29(36):4828-36. [DOI:10.1200/JCO.2011.38.0899] [PMID] [PMCID]
3. Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, et al. Safety profiles of anti-CTLA-4 and anti-PD 1 antibodies alone and in combination. Nat Rev Clin Oncol. 2016;13(8):473-86. [DOI:10.1038/nrclinonc.2016.58] [PMID]
4. Hosseinzadeh F, Mohammadi S, Nejatollahi F. Production and Evaluation of Specific Single-Chain Antibodies against CTLA-4 for Cancer-Targeted Therapy. Rep Biochem Mol Biol. 2017;6(1):8-14.
5. Buchbinder EI, Anupam D. CTLA-4 and PD-1 pathways similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98-106. [DOI:10.1097/COC.0000000000000239] [PMID] [PMCID]
6. Shen X, Zhao B. Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis. BMJ. 2018;362:k3529. [DOI:10.1136/bmj.k3529] [PMID] [PMCID]
7. Mayoux M, Roller A, Pulko V, Sammicheli S, Chen S, Sum E, et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med. 2020;11;12(534):eaav7431. [DOI:10.1126/scitranslmed.aav7431] [PMID]
8. Sepahi S, Pasdar A, Gerayli S, Rostami S, Gholoobi A, Meshkat Z. CTLA-4 Gene Haplotypes and the Risk of Chronic Hepatitis C Infection; a Case Control Study. Rep Biochem Mol Biol. 2017;6(1):51-58.Su Z, Wang B, Almo SC, Wu Y. Understanding the targeting mechanisms of multi-specific biologics in immunotherapy with multiscale modeling. iScience. 2020;23(12):101835. [DOI:10.1016/j.isci.2020.101835] [PMID] [PMCID]
9. Seror R, Mariette X. Malignancy and the risks of biologic therapies: Current status. Rheum Dis Clin North Am. 2017;43(1):43-64. [DOI:10.1016/j.rdc.2016.09.006] [PMID]
10. Quayle SN, Girgis N, Thapa DR, Merazga Z, Kemp MM, Histed A, et al. CUE-101, a Novel E7-pHLA-IL2-Fc fusion protein, enhances tumor antigen-specific T-cell activation for the reatment of HPV16-driven malignancies. Clin Cancer Res. 2020;26(8):1953-1964. [DOI:10.1158/1078-0432.CCR-19-3354] [PMID]
11. Peraino J, Huiping Z, Hermanrud CE, Guoying L, Sachs DH, Huang CA, et al. Expression and purification of soluble porcine CTLA-4 in yeast pichia pastoris. Protein Expression and Purification. 2012;82(2):270-278. [DOI:10.1016/j.pep.2012.01.012] [PMID] [PMCID]
12. Cox GN, Pratt D, Smith D, McDermott MJ, Vanderslice RW. Refolding and characterization of recombinant human soluble CTLA-4 expressed in Escherichia coli. Protein Expr Purif. 1999;17(1):26-32. [DOI:10.1006/prep.1999.1093] [PMID]
13. Kalim M, Jie C, Shenghao W, Caiyao L, Saif U, Keying L, et al. Construction of high level prokaryotic expression and purification system of PD-L1 extracellular domain by using Escherichia coli host cell machinery. Immunol Lett. 2017;190:34-41. [DOI:10.1016/j.imlet.2017.06.004] [PMID]
14. Sezonov G, Danièle JP, Richard DA. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol. 2007;189(23):8746-9. [DOI:10.1128/JB.01368-07] [PMID] [PMCID]
15. Hartley JL. Cloning technologies for protein expression and purification. Curr Opin Biotechnol. 2006;17(4):359-66. [DOI:10.1016/j.copbio.2006.06.011] [PMID]
16. Jana S, Deb JK. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol. 2005;67(3):289-98. [DOI:10.1007/s00253-004-1814-0] [PMID]
17. Kumar JK, Stanley T, Richardson CC. Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci U S A. 2004;101(11):3759-64. [DOI:10.1073/pnas.0308701101] [PMID] [PMCID]
18. Zhenyu G, Weidenhaupt M, Ivanova N. et al. Chromatographic methods for the isolation of, and refolding of proteins from, Escherichia coli inclusion bodies. Protein Expr Purif. 2002;25(1):174-9. [DOI:10.1006/prep.2002.1624] [PMID]
19. Xu L, Liu Y, He X. Expression and purification of soluble human programmed Death-1 in Escherichia coli. Cell Mol Immunol. 2006;3(2):139-43.
20. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-64. [DOI:10.1038/nrc3239] [PMID] [PMCID]
21. Keir ME, Manish JB, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. [DOI:10.1146/annurev.immunol.26.021607.090331] [PMID]
22. Joel S, Taube JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 2015;23:32-8. [DOI:10.1016/j.coph.2015.05.011] [PMID] [PMCID]
23. Arun R, Gulley JL. Nivolumab (anti-PD-1, BMS-936558, ONO-4538) in patients with advanced non-small cell lung cancer. Transl Lung Cancer Res. 2014;3(6):403-5.
24. Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24(4):896-905. [DOI:10.1158/1078-0432.CCR-17-2664] [PMID] [PMCID]
25. Zaretsky JM, Angel GD, Shin DS, Helena EO, Willy H, Siwen HL, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819-29. [DOI:10.1056/NEJMoa1604958] [PMID] [PMCID]
26. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, efficacy, and Limitations. Front Oncol. 2018;8:86. [DOI:10.3389/fonc.2018.00086] [PMID] [PMCID]
27. Müller D, Bayer K, Mattanovich D. Potentials and limitations of prokaryotic and eukaryotic expression systems for recombinant protein production, a comparative view. Microbial Cell Factories 2006;5(Suppl 1). [DOI:10.1186/1475-2859-5-S1-P61]
28. Nazzareno D, Gao C, Fleming R, Robert MW, Yao XT, Shirinian L, et al. The design and characterization of oligospecific antibodies for simultaneous targeting of multiple disease mediators. J Mol Biol. 2009;393(3):672-92. [DOI:10.1016/j.jmb.2009.08.032] [PMID]
29. Vallejo LF, Ursula R. Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration. Biotechnol Bioeng. 2004;85(6):601-9. [DOI:10.1002/bit.10906] [PMID]
30. Yoshii H, Furuta T, Yonehara T, Ito D, YY Linko, P Linko. Refolding of denatured/reduced lysozyme at high concentration with diafiltration. Biosci Biotechnol Biochem. 2000;64(6):1159-65. [DOI:10.1271/bbb.64.1159] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb