Volume 11, Issue 4 (Vol.11 No.4 Jan 2023)                   rbmb.net 2023, 11(4): 663-671 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aji Y G, Melita S, Dijaya R, Subali D, Kartawidjajaputra F, Suwanto A. Evaluation of Caffeine Ingested Timing on Endurance Performance based on CYP1A2 rs762551 Profiling in Healthy Sedentary Young Adults. rbmb.net 2023; 11 (4) :663-671
URL: http://rbmb.net/article-1-1020-en.html
Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University, of Indonesia, Jakarta 12930, Indonesia.
Abstract:   (1819 Views)
Background: Caffeine is generally suggested to increase VO2max in endurance performance. Nevertheless, the response to caffeine ingestion does not seem to be uniform across individuals. Therefore, caffeine ingested timing on endurance performance based on the type of CYP1A2 single nucleotide polymorphism rs762551, that were classified as fast and slow metabolizers, need to be evaluated.

Methods: Thirty participants participated in this study. DNA was obtained from saliva samples and genotyped using polymerase chain reaction-restriction fragment length polymorphism. Each respondent completed beep tests under three treatments blindly: placebo, 4 mg/kg body mass of caffeine one hour, and two hours before test.  

Results: Caffeine increased estimated VO2max in fast metabolizers (caffeine=29.39±4.79, placebo=27.33±4.02, p<0.05) and slow metabolizers (caffeine=31.25±6.19, placebo=29.17±5.32, p<0.05) in one hour before test. Caffeine also increased estimated VO2max in fast metabolizers (caffeine=28.91±4.65, placebo=27.33±4.02, p<0.05) and slow metabolizers (caffeine=32.53±6.68, placebo=29.17±5.32, p<0.05) in two hour before test. However, for slow metabolizers, the increasing was greater when caffeine was administered two hours before test (slow=3.37±2.07, fast=1.57±1.62, p<0.05).

Conclusions: Genetic variance may affect the optimal caffeine ingestion timing, sedentary individuals who want to enhance their endurance performance may ingest caffeine 1 hour before exercise for fast metabolizers and 2 hours before exercise for slow metabolizers.
Full-Text [PDF 259 kb]   (1386 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2022/08/5 | Accepted: 2022/09/20 | Published: 2023/04/3

References
1. McArdle WD, Katch FI, Katch VL. Exercise physiology: nutrition, energy, and human performance. Philadelphia (US): Lippincott Williams & Wilkins. 2010;533-590.
2. Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res. 2009;23(1):315-24. [DOI:10.1519/JSC.0b013e31818b979a] [PMID]
3. Southward K, Rutherfurd-Markwick KJ, Ali A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med. 2018;48(8):1913-1928. [DOI:10.1007/s40279-018-0939-8] [PMID]
4. Del Coso J, Muñoz G, Muñoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metab. 2011;36(4):555-61. [DOI:10.1139/h11-052] [PMID]
5. Aguilar-Navarro M, Muñoz G, Salinero JJ, Muñoz-Guerra J, Fernández-Álvarez M, Plata MDM, Del Coso J. Urine Caffeine Concentration in Doping Control Samples from 2004 to 2015. Nutrients. 2019;11(2):286. [DOI:10.3390/nu11020286] [PMID] [PMCID]
6. Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15:11. [DOI:10.1186/s12970-018-0216-0] [PMID] [PMCID]
7. Thorn CF, Aklillu E, McDonagh EM, Klein TE, Altman RB. PharmGKB summary: caffeine pathway. Pharmacogenet Genomics. 2012;22(5):389-95. [DOI:10.1097/FPC.0b013e3283505d5e] [PMID] [PMCID]
8. Nehlig A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol Rev. 2018;70(2):384-411. [DOI:10.1124/pr.117.014407] [PMID]
9. Salinero JJ, Lara B, Ruiz-Vicente D, Areces F, Puente-Torres C, Gallo-Salazar C, et al. CYP1A2 Genotype Variations Do Not Modify the Benefits and Drawbacks of Caffeine during Exercise: A Pilot Study. Nutrients. 2017;9(3):269. [DOI:10.3390/nu9030269] [PMID] [PMCID]
10. Potgieter S, Wright HH, Smith C. Caffeine Improves Triathlon Performance: A Field Study in Males and Females. Int J Sport Nutr Exerc Metab. 2018;28(3):228-237. [DOI:10.1123/ijsnem.2017-0165] [PMID]
11. Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med Sci Sports Exerc. 2018;50(8):1570-1578. [DOI:10.1249/MSS.0000000000001596] [PMID]
12. Womack CJ, Saunders MJ, Bechtel MK, Bolton DJ, Martin M, Luden ND, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9(1):7. [DOI:10.1186/1550-2783-9-7] [PMID] [PMCID]
13. Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007;63(6):537-46. [DOI:10.1007/s00228-007-0288-2] [PMID]
14. Djordjevic N, Ghotbi R, Bertilsson L, Jankovic S, Aklillu E. nduction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur J Clin Pharmacol. 2007;64:381-385. [DOI:10.1007/s00228-007-0438-6] [PMID]
15. Carswell AT, Howland K, Martinez-Gonzalez B, Baron P, Davison G. The effect of caffeine on cognitive performance is influenced by CYP1A2 but not ADORA2A genotype, yet neither genotype affects exercise performance in healthy adults. Eur J Appl Physiol. 2020;120(7):1495-1508. [DOI:10.1007/s00421-020-04384-8] [PMID] [PMCID]
16. Giersch GEW, Boyett JC, Hargens TA, Luden ND, Saunders MJ, Daley H, et al. The effect of the CYP1A2-163 > A polymorphism on caffeine metabolism and subsequent cycling performance. J Caffeine Adenosine Res. 2018;8:65-70. [DOI:10.1089/caff.2017.0028]
17. Grgic J, Pickering C, Bishop DJ, Schoenfeld BJ, Mikulic P, Pedisic Z. CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. J Int Soc Sports Nutr. 2020;17(1):21. [DOI:10.1186/s12970-020-00349-6] [PMID] [PMCID]
18. [WHO] World Health Organization. WHO guidelines on physical activity and sedentary behaviour. Geneva (CH): World Health Organization. 2020;1-93.
19. Rahimi R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: a randomized, double-blind, placebo-controlled, crossover study. Ir J Med Sci. 2019;188(1):337-345. [DOI:10.1007/s11845-018-1780-7] [PMID]
20. Warburton DE, Gledhill N, Jamnik VK, Bredin SS, McKenzie DC, Stone J, et al. Evidence-based risk assessment and recommendations for physical activity clearance: Consensus Document 2011. Appl Physiol Nutr Metab. 2011;36 Suppl 1:S266-98. [DOI:10.1139/h11-062] [PMID]
21. Aref HF, Naji NA, Ibrahim HD. Evaluation of serum cyclooxygenase, hepcidin levels in acute renal injury (AKI) patients following cardiac catheterization. Rep Biochem Mol. 2021;10:197-203. [DOI:10.52547/rbmb.10.2.197] [PMID] [PMCID]
22. Karmacharya P, Shrestha GL, Singh S, Shrestha OK. Relation of waist hip ratio and BMI with the vital capacity. J Chitwan Med Coll. 2019;9(3):51-55. https://doi.org/10.3126/jcmc.v9i3.25783 [DOI:10.54530/jcmc.14]
23. Djafarian K, Speakman JR, Stewart J, Jackson DM. Familial resemblance of body composition, physical activity, and resting metabolic rate in pre-school children. Rep Biochem Mol Biol. 2013;2(1):1-15.
24. Kim EK, Yeon SE, Lee SH, Choe JS. Comparison of total energy expenditure between the farming season and off farming season and accuracy assessment of estimated energy requirement prediction equation of Korean farmers. Nutr Res Pract. 2015;9(1):71-8. [DOI:10.4162/nrp.2015.9.1.71] [PMID] [PMCID]
25. Timlin MT, Pereira MA. Breakfast frequency and quality in the etiology of adult obesity and chronic diseases. Nutr Rev. 2007;65(6 Pt 1):268-81. [DOI:10.1111/j.1753-4887.2007.tb00304.x]
26. Coulson M, Archer D. Practical fitness testing: analysis in exercise and sport. London: A & C Black. 2009;187-210.
27. Léger LA, Lambert J. A maximal multistage 20-m shuttle run test to predict VO2 max. Eur J Appl Physiol Occup Physiol. 1982;49(1):1-12. [DOI:10.1007/BF00428958] [PMID]
28. Sepriani R, Rosmaneli, Asnaldi A. Efektivitas minuman energi terhadap daya tahan aerobik. Jurnal Sporta Saintika. 2016;1(2):175-188.
29. Usman A, Arimbi, Muriyati. The effect of caffeine on VO2max athletes ability. Int J Sci: Basic Appl Res. 2017;35(3):259-261.
30. Pickering C. Caffeine, CYP1A2 genotype, and sports performance: is timing important? Ir J Med Sci. 2019;188(1):349-350. [DOI:10.1007/s11845-018-1811-4] [PMID]
31. Pickering C, Kiely J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Med. 2018;48(1):7-16. [DOI:10.1007/s40279-017-0776-1] [PMID] [PMCID]
32. Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol (1985). 2002;93(4):1227-34. [DOI:10.1152/japplphysiol.00187.2002] [PMID]
33. Temple JL, Ziegler AM. Gender Differences in Subjective and Physiological Responses to Caffeine and the Role of Steroid Hormones. J Caffeine Res. 2011;1(1):41-48. [DOI:10.1089/jcr.2011.0005] [PMID] [PMCID]
34. Roomi AB, Nori W, Hamed RM. Lower serum irisin levels are associated with increased osteoporosis and oxidative stress in postmenopausal. Rep Biochem Mol. 2021;10(1):13-19. [DOI:10.52547/rbmb.10.1.13] [PMID] [PMCID]
35. De Paula, Farah A. Caffeine consumption through coffee: content in the beverage, metabolism, health benefits and risks. Beverages. 2019;5(2):1-50. [DOI:10.3390/beverages5020037]
36. Daly JW, Butts-Lamb P, Padgett W. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol. 1983;3(1):69-80. [DOI:10.1007/BF00734999] [PMID]
37. McNaughton LR, Lovell RJ, Siegler J, Midgley AW, Moore L, Bentley DJ. The effects of caffeine ingestion on time trial cycling performance. Int J Sports Physiol Perform. 2008;3(2):157-63. [DOI:10.1123/ijspp.3.2.157] [PMID]
38. Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70-84. [DOI:10.1097/00005768-200001000-00012] [PMID]
39. Billat V, Foster C. Indirect methods for estimation of aerobic power. In: Maud PJ, Coster C (editors). Physiological Assessment of Human Fitness. Champaign: Human Kinetics. 2006;19-38.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb