Volume 11, Issue 4 (Vol.11 No.4 Jan 2023)                   rbmb.net 2023, 11(4): 626-634 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehnavi S, Khodadadi A, Asadirad A, Ghadiri A. Loading Ovalbumin into Mesenchymal Stem Cell-Derived Exosomes as a Nanoscale Carrier with Immunomodulatory Potential for Allergen-Specific Immunotherapy. rbmb.net 2023; 11 (4) :626-634
URL: http://rbmb.net/article-1-1072-en.html
Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran & Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Abstract:   (1475 Views)
Background: Exosomes are nanoscale vesicles widely used as drug delivery systems. Mesenchymal stem cell (MSC)-derived exosomes have shown immunomodulatory potential. This study optimized loading OVA into the mice adipose tissue-derived MSC-isolated exosomes to prepare the OVA-MSC-exosome complex for allergen-specific immunotherapy.

Methods: MSCs were harvested from mice adipose tissue and characterized by flow cytometry and evaluating differentiation potential. The exosomes were isolated and characterized via Dynamic Light Scattering, Scanning Electron Microscopy, and flow cytometry. Different concentrations of ovalbumin were incubated with MSC-exosome in various durations to optimize a more suitable protocol. BCA and HPLC analysis were used to quantify, and DLS was applied to qualify the prepared formulation of the OVA-exosome complex.

Results: The harvested MSCs and isolated exosomes were characterized. Analysis of the OVA-exosome complex revealed that OVA in primary 500 μg/ml concentration and incubation for 6 h results in higher efficacy.

Conclusions: Loading OVA into MSC-derived exosomes was successfully optimized and could be administrated for allergen-specific immunotherapy in the animal model.
Full-Text [PDF 340 kb]   (1057 Downloads)    
Type of Article: Original Article | Subject: Immunology
Received: 2022/10/20 | Accepted: 2022/10/23 | Published: 2023/04/3

References
1. Zhang Y, Chen Y, Lo C, Zhuang J, Angsantikul P, Zhang Q, et al. Inhibition of pathogen adhesion by bacterial outer membrane‐coated nanoparticles. Angew Chem Int Ed. 2019;58(33):11404-8. [DOI:10.1002/anie.201906280] [PMID]
2. Yong T, Zhang X, Bie N, Zhang H, Zhang X, Li F, et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat commun. 2019;10(1):1-16. [DOI:10.1038/s41467-019-11718-4] [PMID] [PMCID]
3. Shojapour M, Mosayebi G, Hajihossein R, Noorbakhsh F, Mokarizadeh A, Ghahremani MH. A simplified protocol for the purification of schwann cells and exosome isolation from C57BL/6 mice. Rep Biochem Mol Biol. 2018;7(1):9.
4. Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, et al. Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater. 2019;86:1-14. https://doi.org/10.1016/j.actbio.2018.12.045 [DOI:10.1016/j.biomaterials.2019.03.001] [PMID]
5. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta Rev Cancer. 2014;1846(1):75-87. [DOI:10.1016/j.bbcan.2014.04.005] [PMID]
6. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005;3(1):1-8. https://doi.org/10.1186/1479-5876-3-1 [DOI:10.1186/1479-5876-3-9] [PMID] [PMCID]
7. Asadirad A, Hashemi SM, Baghaei K, Ghanbarian H, Mortaz E, Zali MR, et al. Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. Life Sci. 2019;219:152-62. [DOI:10.1016/j.lfs.2019.01.005] [PMID]
8. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769-79. [DOI:10.1038/mt.2011.164] [PMID] [PMCID]
9. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606-14. [DOI:10.1038/mt.2010.105] [PMID] [PMCID]
10. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Rel. 2015;207:18-30. [DOI:10.1016/j.jconrel.2015.03.033] [PMID] [PMCID]
11. Qu M, Lin Q, Huang L, Fu Y, Wang L, He S, et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson's disease. J Control Rel. 2018;287:156-66. [DOI:10.1016/j.jconrel.2018.08.035] [PMID]
12. Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Rel. 2015;220:727-37. [DOI:10.1016/j.jconrel.2015.09.031] [PMID]
13. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine: Nanotechnol Biol Med. 2016;12(3):655-64. [DOI:10.1016/j.nano.2015.10.012] [PMID] [PMCID]
14. Bagheri E, Abnous K, Farzad SA, Taghdisi SM, Ramezani M, Alibolandi M. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 2020;261:118369. [DOI:10.1016/j.lfs.2020.118369] [PMID]
15. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta Gen Subj. 2012;1820(7):940-8. [DOI:10.1016/j.bbagen.2012.03.017] [PMID]
16. Lee B-C, Kang I, Yu K-R. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-derived exosomes. J Clin Med. 2021;10(4):711. [DOI:10.3390/jcm10040711] [PMID] [PMCID]
17. Chesné J, Schmidt-Weber CB, von-Bieren JE. The use of adjuvants for enhancing allergen immunotherapy efficacy. Immunol Allergy Clin. 2016;36(1):125-45. [DOI:10.1016/j.iac.2015.08.009] [PMID]
18. Sadeghi M, Koushki K, Mashayekhi K, Ayati SH, Shahbaz SK, Moghadam M, et al. DC-targeted gold nanoparticles as an efficient and biocompatible carrier for modulating allergic responses in sublingual immunotherapy. Int Immunopharmacol. 2020;86:106690. [DOI:10.1016/j.intimp.2020.106690] [PMID]
19. Sadeghi M, Shahbaz SK, Dehnavi S, Koushki K, Sankian M. Current possibilities and future perspectives for improving efficacy of allergen-specific sublingual immunotherapy. Int Immunopharmacol. 2021;101:108350. [DOI:10.1016/j.intimp.2021.108350] [PMID]
20. Aun MV, Bonamichi-Santos R, Arantes-Costa FM, Kalil J, Giavina-Bianchi P. Animal models of asthma: utility and limitations. J Asthma Allergy. 2017;10:293. [DOI:10.2147/JAA.S121092] [PMID] [PMCID]
21. Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacol. 2020;28(2):585-601. [DOI:10.1007/s10787-019-00661-x] [PMID]
22. Shamili FH, Alibolandi M, Rafatpanah H, Abnous K, Mahmoudi M, Kalantari M, et al. Immunomodulatory properties of MSC-derived exosomes armed with high affinity aptamer toward mylein as a platform for reducing multiple sclerosis clinical score. J Control Rel. 2019;299:149-64. [DOI:10.1016/j.jconrel.2019.02.032] [PMID]
23. Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type‐1 autoimmune diabetes. J Cell Biochem. 2018;119(11):9433-43. [DOI:10.1002/jcb.27260] [PMID]
24. Asgharian-Rezaee M, Alipour-Farmad R, Tayarani-Najaran Z. Comparison of osteogenic potential of phenytoin with dexamethasone in cultured dental pulp stem cells. Rep Biochem Mol Biol. 2020;9(3):331. 25. Kooijmans SA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJ, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Rel. 2013;172(1):229-38. [DOI:10.1016/j.jconrel.2013.08.014] [PMID]
25. Oskouie MN, Aghili Moghaddam NS, Butler AE, Zamani P, Sahebkar A. Therapeutic use of curcumin‐encapsulated and curcumin‐primed exosomes. J Cellular Physiol. 2019;234(6):8182-91. [DOI:10.1002/jcp.27615] [PMID]
26. Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(11):1302-16. [DOI:10.5966/sctm.2014-0280] [PMID] [PMCID]
27. de Castro LL, Xisto DG, Kitoko JZ, Cruz FF, Olsen PC, Redondo PAG, et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res Ther. 2017;8(1):1-12. [DOI:10.1186/s13287-017-0600-8] [PMID] [PMCID]
28. Du Y-m, Zhuansun Y-x, Chen R, Lin L, Lin Y, Li J-g. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res. 2018;363(1):114-20. [DOI:10.1016/j.yexcr.2017.12.021] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb