Volume 11, Issue 3 (Vol.11 No.3 Oct 2022)                   rbmb.net 2022, 11(3): 502-510 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fujiati F, Haryati H, Joharman J, Utami S W. In Vitro Metabolite Profiling and Anti-Inflammatory Activities of Rhodomyrtus Tomentosa with Red Blood Cell Membrane Stabilization Methods. rbmb.net 2022; 11 (3) :502-510
URL: http://rbmb.net/article-1-1093-en.html
Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia.
Abstract:   (1095 Views)

Background: Rhodomyrtus Tomentosa (Karamunting) is one of South Kalimantan's biodiversity. In previous research on asthma and coal dust exposure models, nebulization with an ethanol extract of R. tomentosa leaves has been shown to reduce inflammatory cells. This study aimed to investigate the anti-inflammatory activity on the stabilization of red blood cell membranes and to identify the chemical compounds present in extracts of R. tomentosa leaves.

Methods: Anti-inflammatory effect of R. tomentosa leaves was evaluated by in vitro red blood cell membrane stabilization methods. Nonsteroidal anti-inflammatory sodium diclofenac was used as the reference drug. The content of chemical compounds in the ethanol extract of R. tomentosa leaves was identified using Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS).

Results: The results of inhibition of red blood cells membrane lysis showed the n-hexane fraction (concentration 25 ppm), ethyl acetate fraction (concentration 50 ppm), and a fraction of water (concentration 50 ppm) with an inhibition level of 54.5%, 81.8%, 63.6%, respectively. The ethyl acetate fraction showed the highest inhibition of hemolysis. This result is not significantly different from the standard anti-inflammatory sodium diclofenac (90.09%). Oleanonic acid and ursonic acid were two similar metabolites in subfractions ethyl acetate 1, 2, and 3, which may have anti- inflammatory properties.

Conclusions: R. Tomentosa leaves can have potency as an anti-inflammatory by increasing the red blood cell membrane stability equal to lysosome cells, depending on the concentration.

Full-Text [PDF 338 kb]   (830 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2022/11/12 | Accepted: 2022/12/12 | Published: 2022/12/31

1. Pahwa R, Goyal A, Jialal I. Chronic Inflammation. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493173/.
2. Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem. 2021;18;16(10):1576-1592. [DOI:10.1002/cmdc.202000996] [PMID]
3. Sherif ATY. In Vitro Evaluation of Purple Inflorescence of Gomphrena globosa (L.) Extracts for Anti-inflammatory Activity and its GC/MS Profile. Asian J Biol Life Sci. 2021;10(1):123-31. [DOI:10.5530/ajbls.2021.10.19]
4. Adnan AZ, Armin F, Sudji IR, Novida MD, Roesma DI, Ali HA, Fauzana A. In Vitro Anti-Inflammatory Activity Test of Tinocrisposide and Freeze-Dried Aqueous Extract of Tinospora Crispa Stems on Human Red Blood Cell By Increasing Membrane Stability Experiment. Asian J Pharm Clin Res. 2019;12(5):125-9. [DOI:10.22159/ajpcr.2019.v12i5.30690]
5. Sutrisno E, Ketut Adnyana I, Sukandar EY, Fidrianny I, Aligita W. Anti-inflammatory study of Anredera cordifolia leaves and Centella asiatica herbs and its combinations using human red blood cell-membrane stabilization method. Asian J Pharm Clin Res. 2016;9(5):78-80. [DOI:10.22159/ajpcr.2016.v9i5.11973]
6. Lala M, Modak D, Paul S, Sarkar I, Dutta A, Kumar A, et al. Potent bioactive methanolic extract of wild orange (Citrus macroptera Mont.) shows antioxidative, anti-inflammatory, and antimicrobial properties in in vitro, in vivo, and in silico studies. Bull Natl Res Cent. 2020;44(81):1-15. [DOI:10.1186/s42269-020-00329-5]
7. Bukhari IA, Pivac N, Alhumayyd MS, Mahesar AL, Gilani AH. The analgesic and anticonvulsant effects of piperine in mice. J Physiol Pharmacol. 2013;64(6):789-94.
8. Fujiati F, Haryati H. Anti-Inflammatory and Anti-Remodelling Potential of Ethanol Extract Rhodomyrtus Tomentosa in Combination of Asthma and Coal Dust Models. Rep Biochem Mol Biol. 2022;10(4):686-96. [DOI:10.52547/rbmb.10.4.686] [PMID] [PMCID]
9. Kusuma IW, Ainiyati N, Suwinarti W. Search for biological activities from an invasive shrub species rosemyrtle (Rhodomyrtus tomentosa). Nusant Biosci. 2016;8(1):55-59. [DOI:10.13057/nusbiosci/n080110]
10. Hakim A, Muti'ah R, Aprinda R, Suryadinata A, Nasikhatul F. Metabolite Profiling Bagian Akar, Batang, Daun, Dan Biji Helianthus annuus L. Menggunakan UPLC-MS 2018. Media Pharm Indones. 2018;2(2):64-81. [DOI:10.24123/mpi.v2i2.1361]
11. Guimarães-Nobre CC, Mendonça-Reis E, Passinho-da-Costa L, Miranda-Alves L, Berto-Junior C. Signaling Pathway in the Osmotic Resistance Induced by Angiotensin II AT2 Receptor Activation in Human Erythrocytes. Rep Biochem Mol Biol. 2021;10(2):314-26. [DOI:10.52547/rbmb.10.2.314] [PMID] [PMCID]
12. Kumar V, Bhat ZA, Kumar D, Khan NA, Chashoo IA. Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia. Asian Pac J Trop Biomed. 2012;2(8):627-30. [DOI:10.1016/S2221-1691(12)60109-9] [PMID]
13. Karunanithi M, Raj CD., Jegadeesan M, Kavimani S. Comparative GCMS analysis and in vitro screening of four species of Mucuna. Asian J Pharm Clin Res. 2012;5(4):239-43.
14. Chaitanya R, Sandhya S, David B, Vinod K, Murali S. HRBC membrane stabilizing property of roor, stem and leaf of glochidion velutinum. Int J Res Pharm Biomed Sci. 2011;2(1):256-9.
15. Solihah I, Wulandari W, Herlina, Puspita Rasyid RS, Suciati T. Study on the anti-inflammatory properties of Karamunting (Rhodomyrtustomentosa (Aiton) Hassk.) leaf extracts. J Phys Conf Ser. 2019;1282(1):1-9. [DOI:10.1088/1742-6596/1282/1/012087]
16. Ranasinghe P, Ranasinghe P, Abeysekera WP, Premakumara GA, Perera YS, Gurugama P, Gunatilake SB. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts. Pharmacognosy Res. 2012;4(4):196-202. [DOI:10.4103/0974-8490.102261] [PMID] [PMCID]
17. Nkeh-Chungag BN, Oyedeji OO, Oyedeji AO, Ndebia EJ. Anti-inflammatory and membrane-stabilizing properties of two semisynthetic derivatives of oleanolic acid. Inflammation. 2015;38(1):61-9. [DOI:10.1007/s10753-014-0007-y] [PMID]
18. Kashyap D, Sharma A, Tuli HS, Punia S, Sharma AK. Ursolic Acid and Oleanolic Acid: Pentacyclic Terpenoids with Promising Anti-Inflammatory Activities. Recent Pat Inflamm Allergy Drug Discov. 2016;10(1):21-33. [DOI:10.2174/1872213X10666160711143904] [PMID]
19. Giner-Larza EM, Máñez S, Recio MC, Giner RM, Prieto JM, Cerdá-Nicolás M, Ríos JL. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur J Pharmacol. 2001;28;428(1):137-43. [DOI:10.1016/S0014-2999(01)01290-0] [PMID]
20. Luan M, Wang H, Wang J, Zhang X, Zhao F, Liu Z, Meng Q. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini Rev Med Chem. 2022;22(3):422-436. [DOI:10.2174/1389557521666210913113522] [PMID]
21. Son J, Lee SY. Therapeutic Potential of Ursonic Acid: Comparison with Ursolic Acid. Biomolecules. 2022;10(11):1505. [DOI:10.3390/biom10111505] [PMID] [PMCID]
22. Zhang C, Xu SH, Ma BL, Wang WW, Yu BY, Zhang J. New derivatives of ursolic acid through the biotransformation by Bacillus megaterium CGMCC 1.1741 as inhibitors on nitric oxide production. Bioorg Med Chem Lett. 2017;27(11):2575-2578. [DOI:10.1016/j.bmcl.2017.03.076] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb