Volume 12, Issue 1 (Vol.12 No.1 Apr 2023)                   rbmb.net 2023, 12(1): 159-172 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Souri F, Badavi M, Dianat M, Mard S A, Sarkaki A. Effect of Gallic Acid Pretreatment and SGK1 Enzyme Inhibition on Cardiac Function and Inflammation in a Rat Model of Ischemia-Reperfusion Injury. rbmb.net 2023; 12 (1) :159-172
URL: http://rbmb.net/article-1-1126-en.html
Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran & Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Abstract:   (1370 Views)
Background: Serum and glucocorticoid-induced kinase 1 (SGK1) is an enzyme that may play an important role in ischemic-reperfusion (I/R) injury and myocardial dysfunction. Although many studies have been conducted on individual antioxidants, little attention has been paid to the effects of co-administration of an antioxidant with an SGK1 inhibitor on cardiac function after I/R.

Methods: This study aimed to determine the effects of gallic acid (as an antioxidant) combined with an SGK1 inhibitor on I/R-induced cardiac dysfunction and inflammation. Sixty male Wistar rats were randomized into 6 groups, pretreated with gallic acid or vehicle for 10 days. Subsequently, the heart was isolated and exposed to I/R. In groups that received the SGK1 inhibitor, the heart was perfused with the SGK1 inhibitor GSK650394, 5 min before induction of ischemia. After that, cardiac function, inflammatory factors, and myocardial damage were evaluated.

Results: The combination of these two compounds improved cardiac contractility, heart rate, rate pressure product, left ventricular developed pressure, left ventricular systolic pressure, perfusion pressure, and QRS voltage significantly (P < 0.05). In addition, concomitant therapy of these two agents reduced tumor necrosis factor-alpha and interleukin-6, and the activity of creatine kinase-MB, lactate dehydrogenase, and troponin-I (P < 0.05).

Conclusions: The results indicated that administration of gallic acid with the SGK1 inhibitor may have a potentiating effect on the improvement of cardiac dysfunction and I/R-induced inflammation.
Full-Text [PDF 454 kb]   (978 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/01/14 | Accepted: 2023/02/12 | Published: 2023/08/15

References
1. Smit M, Coetzee A, Lochner A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J Cardiothorac Vasc Anesth. 2020;34(9):2501-12. [DOI:10.1053/j.jvca.2019.10.005] [PMID]
2. D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582-92. [DOI:10.1002/cbin.11137] [PMID]
3. Mohammadi A, Karami ARB, Mashtani VD, Sahraei T, Tarashoki ZB, Khattavian E, et al. Evaluation of oxidative stress, apoptosis, and expression of microRNA-208a and microRNA-1 in cardiovascular patients. Rep Biochem Mol Biol. 2021;10(2):183. [DOI:10.52547/rbmb.10.2.183] [PMID] [PMCID]
4. Algoet M, Janssens S, Himmelreich U, Gsell W, Pusovnik M, Van den Eynde J, et al. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med. 2022. [DOI:10.1016/j.tcm.2022.02.005] [PMID]
5. Garg P, Morris P, Fazlanie AL, Vijayan S, Dancso B, Dastidar AG, et al. Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Intern Emerg Med. 2017;12(2):147-55. [DOI:10.1007/s11739-017-1612-1] [PMID] [PMCID]
6. Rashid S, Malik A, Khurshid R, Faryal U, Qazi S. The Diagnostic Value of Biochemical Cardiac Markers in Acute Myocardial Infarction. [Internet]. Myocardial Infarction. IntechOpen; 2019. Available from: http://dx.doi.org/10.5772/intechopen.76150 [DOI:10.5772/intechopen.76150]
7. Naseroleslami M, Rakhshan K, Aboutaleb N, Souri F. Lavender Oil Attenuates Myocardial Ischemia/Reperfusion Injury Through Inhibition of Autophagy and Stimulation of Angiogenesis. Iran J Sci Technol Trans Sci. 2021;45(4):1201-9. [DOI:10.1007/s40995-021-01123-2]
8. Baloglu UB, Talo M, Yildirim O, San Tan R, Acharya UR. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit Lett. 2019;122:23-30. [DOI:10.1016/j.patrec.2019.02.016]
9. Christenson E, Christenson RH. The role of cardiac biomarkers in the diagnosis and management of patients presenting with suspected acute coronary syndrome. Ann Lab Med. 2013;33(5):309-318. [DOI:10.3343/alm.2013.33.5.309] [PMID] [PMCID]
10. Lang F, Shumilina E. Regulation of ion channels by the serum‐and glucocorticoid‐inducible kinase SGK1. FASEB J. 2013;27(1):3-12. [DOI:10.1096/fj.12-218230] [PMID]
11. Lang F, Shumilina E. Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J. 2013;27(1):3-12. [DOI:10.1096/fj.12-218230] [PMID]
12. Yang M, Zheng J, Miao Y, Wang Y, Cui W, Guo J, et al. Serum-Glucocorticoid Regulated Kinase 1 Regulates Alternatively Activated Macrophage Polarization Contributing to Angiotensin II-Induced Inflammation and Cardiac Fibrosis. Arterioscler Thromb Vasc Biol. 2012;32(7):1675-86. [DOI:10.1161/ATVBAHA.112.248732] [PMID]
13. Lang F, Stournaras C, Alesutan I. Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1. Mol Membr Biol. 2014;31(1):29-36. [DOI:10.3109/09687688.2013.874598] [PMID]
14. Souri F, Badavi M, Dianat M, Mard SA, Sarkaki A. Protective effects of gallic acid and SGK1 inhibitor on oxidative stress and cardiac damage in an isolated heart model of ischemia/reperfusion injury in rats. Iran J Basic Med Sci. 2023, 26(3):308-315.
15. Gan W, Ren J, Li T, Lv S, Li C, Liu Z, Yang M. The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis. 2018;1864(1):1-10. [DOI:10.1016/j.bbadis.2017.10.001] [PMID]
16. Ahmadvand H, Yalameha B, Adibhesami G, Nasri M, Naderi N, Babaeenezhad E, Nouryazdan, N. The protective role of gallic acid pretreatment on renal ischemia-reperfusion injury in rats. Rep Biochem Mol Biol. 2019;8(1):42-48.
17. Ramezani-Aliakbari F, Badavi M, Dianat M, Mard SA, Ahangarpour A. Effects of gallic acid on hemodynamic parameters and infarct size after ischemia-reperfusion in isolated rat hearts with alloxan-induced diabetes. Biomed Pharmacother. 2017;96:612-8. [DOI:10.1016/j.biopha.2017.10.014] [PMID]
18. Badavi M, Sadeghi N, Dianat M, Samarbafzadeh A. Effects of gallic Acid and cyclosporine a on antioxidant capacity and cardiac markers of rat isolated heart after ischemia/reperfusion. Iran Red Crescent Med J. 2014;16(6):e16424. [DOI:10.5812/ircmj.16424]
19. Baban B, Liu JY, Mozaffari MS. SGK-1 regulates inflammation and cell death in the ischemic-reperfused heart: pressure-related effects. Am J Hypertens. 2014;27(6):846-56. [DOI:10.1093/ajh/hpt269] [PMID]
20. Javidanpour S, Dianat M, Badavi M, Mard SA. The inhibitory effect of rosmarinic acid on overexpression of NCX1 and stretch-induced arrhythmias after acute myocardial infarction in rats. Biomed Pharmacother. 2018;102:884-93. [DOI:10.1016/j.biopha.2018.03.103] [PMID]
21. Kalantari H, Mombeyni M, Dianat M, Badavi M, Goudarzi M. The effect of Prunus cerasus (sour cherry) kernel seed extract on QT interval of heart and its histopathology in biliary cirrhosis induced by bile duct ligation in rats. Jundishapur Journal of Natural Pharmaceutical Products. 2015;10(4). [DOI:10.17795/jjnpp-25470] [PMID] [PMCID]
22. Dianat M, Amini N, Badavi M, Farbood Y. Ellagic acid improved arrhythmias induced by CaCL2 in the rat stress model. Avicenna J Phytomed. 2015;5(2):120-7.
23. Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun. 2022;635:194-202. [DOI:10.1016/j.bbrc.2022.09.111] [PMID]
24. Aldous SJ. Cardiac biomarkers in acute myocardial infarction. Int J Cardiol. 2013;164(3):282-94. [DOI:10.1016/j.ijcard.2012.01.081] [PMID]
25. Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, et al. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients. 2018;11(1):23. [DOI:10.3390/nu11010023] [PMID] [PMCID]
26. Nouri A, Salehi-Vanani N, Heidarian E. Antioxidant, anti-inflammatory and protective potential of gallic acid against paraquat-induced liver toxicity in male rats. Avicenna J Phytomed. 2021;11(6):633-44.
27. Kroes Bv, Van den Berg A, Van Ufford HQ, Van Dijk H, Labadie R. Anti-inflammatory activity of gallic acid. Planta Med. 1992;58(06):499-504. [DOI:10.1055/s-2006-961535] [PMID]
28. Kongpichitchoke T, Chiu MT, Huang TC, Hsu JL. Gallic acid content in Taiwanese teas at different degrees of fermentation and its antioxidant activity by inhibiting PKCδ activation: in vitro and in silico studies. Molecules. 2016;21(10):1346. [DOI:10.3390/molecules21101346] [PMID] [PMCID]
29. Yang M, Zheng J, Miao Y, Wang Y, Cui W, Guo J, et al. Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arterioscler Thromb Vasc Biol. 2012;32(7):1675-86. [DOI:10.1161/ATVBAHA.112.248732] [PMID]
30. Lang F, Böhmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev. 2006;86(4):1151-78. [DOI:10.1152/physrev.00050.2005] [PMID]
31. Dieter M, Palmada M, Rajamanickam J, Aydin A, Busjahn A, Boehmer C, et al. Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4‐2 and kinases SGK1, SGK3, and PKB. Obes Res. 2004;12(5):862-70. [DOI:10.1038/oby.2004.104] [PMID]
32. Busjahn A, Aydin A, Uhlmann R, Krasko C, Bahring S, Szelestei T, et al. Serum- and glucocorticoid-regulated kinase (SGK1) gene and blood pressure. Hypertension. 2002;40(3):256-60. [DOI:10.1161/01.HYP.0000030153.19366.26] [PMID]
33. Busjahn A, Luft F. Twin studies in the analysis of minor physiological differences between individuals. Cell Physiol Biochem. 2003;13(1):51-8. [DOI:10.1159/000070249] [PMID]
34. Busjahn A, Seebohm G, Maier G, Toliat M, Nürnberg P, Aydin A, et al. Association of the serum and glucocorticoid regulated kinase (sgk1) gene with QT interval. Cell Physiol Biochem. 2004;14(3):135-42. [DOI:10.1159/000078105] [PMID]
35. Lang F, Henke G, Embark H, Waldegger S, Palmada M, Böhmer C, et al. Regulation of channels by the serum and glucocorticoid-inducible kinase-implications for transport, excitability and cell proliferation. Cell Physiol Biochem. 2003;13(1):41-50. [DOI:10.1159/000070248] [PMID]
36. Nah D-Y, Rhee M-Y. The inflammatory response and cardiac repair after myocardial infarction. Korean Circ J. 2009;39(10):393-8. [DOI:10.4070/kcj.2009.39.10.393] [PMID] [PMCID]
37. Hartman MH, Vreeswijk-Baudoin I, Groot HE, van de Kolk KW, de Boer RA, Mateo Leach I, et al. Inhibition of interleukin-6 receptor in a murine model of myocardial ischemia-reperfusion. PloS one. 2016;11(12):e0167195. [DOI:10.1371/journal.pone.0167195] [PMID] [PMCID]
38. Radmehr V, Ahangarpour A, Mard SA, Khorsandi L. Crocin ameliorates MicroRNAs-associated ER stress in type 2 diabetes induced by methylglyoxal. Iran J Basic Med Sci. 2022;25(2):179.
39. Souri F, Rakhshan K, Erfani S, Azizi Y, Nasseri Maleki S, Aboutaleb N. Natural lavender oil (Lavandula angustifolia) exerts cardioprotective effects against myocardial infarction by targeting inflammation and oxidative stress. Inflammopharmacology. 2019;27(4):799-807. [DOI:10.1007/s10787-018-0520-y] [PMID]
40. Asdaq SM, Inamdar MN. Pharmacodynamic interaction of garlic with hydrochlorothiazide in rats. Indian J Physiol Pharmacol. 2009;53(2):127-36.
41. Asdaq SM, Inamdar MN, Asad M. Pharmacodynamic interaction of garlic with propranolol in ischemia-reperfusion induced myocardial damage. Pak J Pharm Sci. 2010;23(1):42-7.
42. Singh G, Rohilla A, Singh M, Balakumar P. Possible role of JAK-2 in attenuated cardioprotective effect of ischemic preconditioning in hyperhomocysteinemic rat hearts. Yakugaku Zasshi. 2009;129(5):523-35. [DOI:10.1248/yakushi.129.523] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb