Volume 12, Issue 1 (Vol.12 No.1 Apr 2023)                   rbmb.net 2023, 12(1): 92-101 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zheng Y, Wang Y, He H, Zou Z, Lu H, Li J, et al . Transcriptome Data Reveal Geographic Heterogeneity in Gene Expression in Patients with Prostate Cancer. rbmb.net 2023; 12 (1) :92-101
URL: http://rbmb.net/article-1-1145-en.html
The Department of Urology of Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China & The Department of Urology of Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.
Abstract:   (1318 Views)
Background: The incidence of prostate cancer (PC) exhibits geographical heterogeneity. However, the metabolic mechanisms underlying this geographic heterogeneity remain unclear. This study aimed to reveal the metabolic mechanism of the geographic heterogeneity in the incidence of PC.
This study aimed to investigate the anti-cancer effects of different gum extracts on metabolic changes and their impact on gene expression in HT-29 cell.

Methods: Transcriptomic data from public databases were obtained and analyzed to screen geographic-differentially expressed genes and metabolic pathways. Associations between these differentially expressed genes and the incidence of PC were determined to identify genes that were highly associated with PC incidence. A co-expression network analysis was performed to identify geographic-specific regulatory pathways.

Results: A total of 175 differentially expressed genes were identified in four countries and were associated with the regulation of DNA replication and the metabolism of pyrimidine, nucleotides, purines, and galactose. Additionally, the expression of the genes CLVS2, SCGB1A1, KCNK3, HHIPL2, MMP26, KCNJ15, and PNMT was highly correlated with the incidence of PC. Geographic-specific differentially expressed genes in low-incidence areas were highly correlated with KCNJ15, MMP26, KCNK3, and SCCB1A1, which play a major role in ion channel-related functions.

Conclusions: This study suggests that geographic heterogeneity in PC incidence is associated with the expression levels of genes associated with amino acid metabolism, lipid metabolism, and ion channels.
 
Full-Text [PDF 365 kb]   (1056 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/02/13 | Accepted: 2023/03/7 | Published: 2023/08/15

References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. [DOI:10.3322/caac.21660] [PMID]
2. Yan Y, Yeon SY, Qian C, You S, Yang W. On the Road to Accurate Protein Biomarkers in Prostate Cancer Diagnosis and Prognosis: Current Status and Future Advances. Int J Mol Sci. 2021;22(24):13537. [DOI:10.3390/ijms222413537] [PMID] [PMCID]
3. Wild CP, Weiderpass E, Stewart BW. World Cancer Report: Cancer Research for Cancer Prevention. Lyon, France: International Agency for Research on Cancer. 2020.
4. Wang L, Lu B, He M, Wang Y, Wang Z, Du L. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health. 2022;10:811044. [DOI:10.3389/fpubh.2022.811044] [PMID] [PMCID]
5. Bechis SK, Carroll PR, Cooperberg MR. Impact of age at diagnosis on prostate cancer treatment and survival. J Clin Oncol. 2011;29(2):235-41. [DOI:10.1200/JCO.2010.30.2075] [PMID] [PMCID]
6. Jian Z, Ye D, Chen Y, Li H, Wang K. Sexual Activity and Risk of Prostate Cancer: A Dose-Response Meta-Analysis. J Sex Med. 2018;15(9), 1300-1309. [DOI:10.1016/j.jsxm.2018.07.004] [PMID]
7. Madersbacher S, Alcaraz A, Emberton M, Hammerer P, Ponholzer A, Schröder FH, Tubaro A. The influence of family history on prostate cancer risk: implications for clinical management. BJU Int. 2011;107(5):716-721. [DOI:10.1111/j.1464-410X.2010.10024.x] [PMID]
8. Fontana F, Anselmi M, Limonta P. Molecular mechanisms and genetic alterations in prostate cancer: From diagnosis to targeted therapy. Cancer Lett. 2022;534:215619. [DOI:10.1016/j.canlet.2022.215619] [PMID]
9. Aurilio G, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Verri E, Scarpelli M, et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells 2020;9(12):2653. [DOI:10.3390/cells9122653] [PMID] [PMCID]
10. Qu LG, Wardan H, Davis ID, Iddawela M, Sluka P, Pezaro CJ. Circulating oestrogen receptor mutations and splice variants in advanced prostate cancer. BJU Int. 2019;124(Suppl 1):50-6. [DOI:10.1111/bju.14797] [PMID]
11. Yan Y, Mao X, Zhang Q, Ye Y, Dai Y, Bao M, et al. Molecular mechanisms, immune cell infiltration, and potential drugs for prostate cancer. Cancer Biomark. 2021;31(1):87-96. [DOI:10.3233/CBM-200939] [PMID]
12. Li, R., Zhu, J., Zhong, W.-D., and Jia, Z. PCaDB-a comprehensive and interactive database for transcriptomes from prostate cancer population cohorts. bioRxiv. 2021;10.1101/2021.06.29.449134. [DOI:10.1101/2021.06.29.449134]
13. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40. [DOI:10.1093/bioinformatics/btp616] [PMID] [PMCID]
14. Teslow EA, Bao B, Dyson G, Legendre C, Mitrea C, Sakr W, et al. Exogenous IL-6 induces mRNA splice variant MBD2_v2 to promote stemness in TP53 wild-type, African American PCa cells. Mol Oncol. 2018;12(7):1138-1152. [DOI:10.1002/1878-0261.12316] [PMID] [PMCID]
15. Kumar A, Kasikci Y, Badredine A, Azzag K, Quintyn Ranty ML, Zaidi F, et al. Patient-matched analysis identifies deregulated networks in prostate cancer to guide personalized therapeutic intervention. Am J Cancer Res. 2021;11(11):5299-5318.
16. Yun SJ, Kim SK, Kim J, Cha EJ, Kim JS, Kim SJ, et al. Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer. Oncotarget. 2017;8(70):114845-114855. [DOI:10.18632/oncotarget.22296] [PMID] [PMCID]
17. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. [DOI:10.1093/nar/gkv007] [PMID] [PMCID]
18. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. [DOI:10.1101/gr.1239303] [PMID] [PMCID]
19. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021 Jul 1;2(3):100141. [DOI:10.1016/j.xinn.2021.100141] [PMID] [PMCID]
20. Li W, Lu Z, Pan D, Zhang Z, He H, Wu J, Peng N. Gene Expression Analysis Reveals Prognostic Biomarkers of the Tyrosine Metabolism Reprogramming Pathway for Prostate Cancer. J Oncol. 2022;2022:5504173. [DOI:10.1155/2022/5504173] [PMID] [PMCID]
21. Badawy AA. Tryptophan metabolism and disposition in cancer biology and immunotherapy. Biosci Rep. 2022;42(11):BSR20221682. [DOI:10.1042/BSR20221682] [PMID] [PMCID]
22. Mukherjee R, McGuinness DH, McCall P, Underwood MA, Seywright M, Orange C, Edwards J. Upregulation of MAPK pathway is associated with survival in castrate-resistant prostate cancer. Br J Cancer. 2011;104(12):1920-8. [DOI:10.1038/bjc.2011.163] [PMID] [PMCID]
23. Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci. 2020;21(12):4507. [DOI:10.3390/ijms21124507] [PMID] [PMCID]
24. Park HW, Song MS, Sim HJ, Ryu PD, Lee SY. The role of the voltage-gated potassium channel, Kv2.1 in prostate cancer cell migration. BMB Rep. 2021;54(2):130-135. [DOI:10.5483/BMBRep.2021.54.2.210] [PMID] [PMCID]
25. Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 2002;186(1):99-105. [DOI:10.1016/S0304-3835(02)00348-8] [PMID]
26. Arcangeli A, Becchetti A. Novel perspectives in cancer therapy: Targeting ion channels. Drug Resist Updat. 2015;21-22:11-9. [DOI:10.1016/j.drup.2015.06.002] [PMID]
27. Farfariello V, Prevarskaya N, Gkika D. Ion Channel Profiling in Prostate Cancer: Toward Cell Population-Specific Screening. Rev Physiol Biochem Pharmacol. 2021;181:39-56. [DOI:10.1007/112_2020_22] [PMID]
28. Strmiska V, Michalek P, Eckschlager T, Stiborova M, Adam V, Krizkova S, Heger Z. Prostate cancer-specific hallmarks of amino acids metabolism: Towards a paradigm of precision medicine. Biochim Biophys Acta Rev Cancer. 2019;1871(2):248-258. [DOI:10.1016/j.bbcan.2019.01.001] [PMID]
29. Nasimi H, Madsen JS, Zedan AH, Schmedes AV, Malmendal A, Osther PJS, Alatraktchi FA. Correlation between stage of prostate cancer and tyrosine and tryptophan in urine samples measured electrochemically. Anal Biochem. 2022;649:114698. [DOI:10.1016/j.ab.2022.114698] [PMID]
30. Onesti CE, Boemer F, Josse C, Leduc S, Bours V, Jerusalem G. Tryptophan catabolism increases in breast cancer patients compared to healthy controls without affecting the cancer outcome or response to chemotherapy. J Transl Med. 2019;17(1):239. [DOI:10.1186/s12967-019-1984-2] [PMID] [PMCID]
31. Opitz CA, Somarribas Patterson LF, Mohapatra SR, Dewi DL, Sadik A, Platten M, Trump S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer. 2020;122(1):30-44. [DOI:10.1038/s41416-019-0664-6] [PMID] [PMCID]
32. Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frédérick R, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A. 2012;109(7):2497-502. [DOI:10.1073/pnas.1113873109] [PMID] [PMCID]
33. Siltari A, Syvälä H, Lou YR, Gao Y, Murtola TJ. Role of Lipids and Lipid Metabolism in Prostate Cancer Progression and the Tumor's Immune Environment. Cancers (Basel). 2022;14(17):4293. [DOI:10.3390/cancers14174293] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb