Volume 12, Issue 1 (Vol.12 No.1 Apr 2023)                   rbmb.net 2023, 12(1): 185-194 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arif Ahmad A, Rahimi Z, Asadi S, Vaisi-Raygani A, Kohsari M. The GPx-1 Gene Variants (rs1050450) in Obesity: Association with the Risk of Obesity and the GPx Activity in Females. rbmb.net 2023; 12 (1) :185-194
URL: http://rbmb.net/article-1-1158-en.html
Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran & Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Abstract:   (926 Views)
Background: This study aimed to investigate the GPx-1 gene polymorphism (rs1050450), the level of oxidative stress and antioxidant parameters, and the lipid profile in an obese Kurdish population in Sulaimani, Iraq.

Methods: In a case-control study,134 obese subjects and 131 normal BMI healthy individuals participated. The GPx-1 gene polymorphism was assessed by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method. The levels of biochemical and oxidative parameters were determined using photometric methods.

Results: The results showed that the fasting blood sugar (FBS), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels were significantly higher in obese subjects compared to the control group. Obese individuals had significantly lower levels of high-density lipoprotein cholesterol (HDL-C) than the controls. The GPx-1 activity and total antioxidant capacity (TAC) levels were significantly elevated in the obese group compared to the control group (P=0.006, and P<0.001, respectively). No significant difference was detected in genotype and allele frequencies of GPx-1 (rs1050450) between obese and normal BMI groups. However, the presence of the GPx-1 TT genotype enhanced the risk of obesity in females by 1.93-fold (95% CI 1.04-3.58, P=0.036). In the total population, the GPx activity increased in the presence of TT compared to CC+CT and CT genotypes.

Conclusions: The study indicated that obesity is linked to significantly higher levels of FBS, TG, LDL-C, TAC, and GPx activity and lower level of HDL-C. Also, we found the GPx-1 gene polymorphism was associated with the risk of obesity in females and increased the GPx activity.
Full-Text [PDF 294 kb]   (700 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/04/10 | Accepted: 2023/05/28 | Published: 2023/08/15

1. Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015;13(10):423-44. [DOI:10.1089/met.2015.0095] [PMID] [PMCID]
2. Tenório MB, Ferreira RC, Moura FA, Bueno NB, de Oliveira ACM, Goulart MOF. Cross-Talk between Oxidative Stress and Inflammation in Preeclampsia. Oxid Med Cell Longev. 2019;2019:8238727. [DOI:10.1155/2019/8238727] [PMID] [PMCID]
3. Masoodian SM, Toolabi K, Omidifar A, Zabihi H, Rahimipour A, Shanaki M. Increased mRNA expression of CTRP3 and CTRP9 in adipose tissue from obese women: is it linked to obesity-related parameters and mRNA expression of inflammatory cytokines? Rep Biochem Mol Biol. 2020;9(1):71. [DOI:10.29252/rbmb.9.1.71] [PMID] [PMCID]
4. Vincent HK, Taylor AG. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes. 2006;30(3):400-18. [DOI:10.1038/sj.ijo.0803177] [PMID]
5. Li S, Eguchi N, Lau H, Ichii H. The role of the Nrf2 signaling in obesity and insulin resistance. Int J Mol Sci. 2020;21(18):6973. [DOI:10.3390/ijms21186973] [PMID] [PMCID]
6. Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16(1):378-400. [DOI:10.3390/ijms16010378] [PMID] [PMCID]
7. Altuhafi A, Altun M, Hadwan MH. The correlation between selenium-dependent glutathione peroxidase activity and oxidant/antioxidant balance in sera of diabetic patients with nephropathy. Rep Biochem Mol Biol. 2021;10(2):164. [DOI:10.52547/rbmb.10.2.164] [PMID] [PMCID]
8. Vincent HK, Innes KE, Vincent KR. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab. 2007;9(6):813-39. [DOI:10.1111/j.1463-1326.2007.00692.x] [PMID]
9. Ishida K, Morino T, Takagi K, Sukenaga Y. Nucleotide sequence of a human gene for glutathione peroxidase. Nucleic Acids Res. 1987;15(23):10051. [DOI:10.1093/nar/15.23.10051] [PMID] [PMCID]
10. Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med. 2018;54(4):287-93. [DOI:10.1016/j.ajme.2017.09.001]
11. Moscow JA, Schmidt L, Ingram DT, Gnarra J, Johnson B, Cowan KH. Loss of heterozygosity of the human cytosolic glutathione peroxidase I gene in lung cancer. Carcinogenesis. 1994;15(12):2769-73. [DOI:10.1093/carcin/15.12.2769] [PMID]
12. Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15(7):1957-97. [DOI:10.1089/ars.2010.3586] [PMID] [PMCID]
13. Gusti AM, Qusti SY, Alshammari EM, Toraih EA, Fawzy MS. Antioxidants-Related Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPX), Glutathione-S-Transferase (GST), and Nitric Oxide Synthase (NOS) Gene Variants Analysis in an Obese Population: A Preliminary Case-Control Study. Antioxidants. 2021;10(4):595. [DOI:10.3390/antiox10040595] [PMID] [PMCID]
14. Tinahones FJ, Murri‐Pierri M, Garrido‐Sánchez L, García‐Almeida JM, García‐Serrano S, García‐Arnés J, et al. Oxidative stress in severely obese persons is greater in those with insulin resistance. Obesity. 2009;17(2):240-6. [DOI:10.1038/oby.2008.536] [PMID]
15. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3-10. https://doi.org/10.2337/diab.46.1.3 [DOI:10.2337/diabetes.46.1.3] [PMID]
16. Bryan S, Baregzay B, Spicer D, Singal PK, Khaper N. Redox-inflammatory synergy in the metabolic syndrome. Can J Physiol Pharmacol. 2013;91(1):22-30. [DOI:10.1139/cjpp-2012-0295] [PMID]
17. Găman M-A, Epîngeac ME, Diaconu CC, Găman AM. Evaluation of oxidative stress levels in obesity and diabetes by the free oxygen radical test and free oxygen radical defence assays and correlations with anthropometric and laboratory parameters. World J Diabetes. 2020;11(5):193. [DOI:10.4239/wjd.v11.i5.193] [PMID] [PMCID]
18. Capell WH, Zambon A, Austin MA, Brunzell JD, Hokanson JE. Compositional differences of LDL particles in normal subjects with LDL subclass phenotype A and LDL subclass phenotype B. Arterioscler Thromb Vasc Biol. 1996;16(8):1040-6. [DOI:10.1161/01.ATV.16.8.1040] [PMID]
19. Klop B, Elte JWF, Castro Cabezas M. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5(4):1218-40. [DOI:10.3390/nu5041218] [PMID] [PMCID]
20. Clemente-Postigo M, Queipo-Ortuno MI, Fernandez-Garcia D, Gomez-Huelgas R, Tinahones FJ, Cardona F. Adipose tissue gene expression of factors related to lipid processing in obesity. PloS one. 2011;6(9):e24783. [DOI:10.1371/journal.pone.0024783] [PMID] [PMCID]
21. Hokanson JE, Krauss RM, Albers JJ, Austin MA, Brunzell JD. LDL physical and chemical properties in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 1995;15(4):452-9. [DOI:10.1161/01.ATV.15.4.452] [PMID]
22. Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013;14(5):10497-538. [DOI:10.3390/ijms140510497] [PMID] [PMCID]
23. Gao L, Mann GE. Vascular NAD (P) H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res. 2009;82(1):9-20. [DOI:10.1093/cvr/cvp031] [PMID]
24. Olusi S. Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. Int J Obes. 2002;26(9):1159-64. [DOI:10.1038/sj.ijo.0802066] [PMID]
25. D'Archivio M, Annuzzi G, Varì R, Filesi C, Giacco R, Scazzocchio B, et al. Predominant role of obesity/insulin resistance in oxidative stress development. Eur J Clin Invest. 2012;42(1):70-8. [DOI:10.1111/j.1365-2362.2011.02558.x] [PMID]
26. Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002;35(8):627-31. [DOI:10.1016/S0009-9120(02)00363-6] [PMID]
27. Hernández Guerrero C, Hernández Chávez P, Martínez Castro N, Parra Carriedo A, García Del Rio S, Pérez Lizaur A. Glutathione peroxidase-1 pro200leu polymorphism (rs1050450) is associated with morbid obesity independently of the presence of prediabetes or diabetes in women from central Mexico. Nutr Hosp. 2015;32(4):1516-25.
28. Brown LA, Kerr CJ, Whiting P, Finer N, McEneny J, Ashton T. Oxidant stress in healthy normal‐weight, overweight, and obese individuals. Obesity. 2009;17(3):460-6. [DOI:10.1038/oby.2008.590] [PMID]
29. Madahian S, Navab KD, Pourtabatabaei N, Seyedali S, Safar S, Vazirian S, et al. Inflammation, high density lipoprotein and endothelium. Curr Med Chem. 2014;21(25):2902-9. [DOI:10.2174/0929867321666140414105530] [PMID]
30. Habyarimana T, Bakri Y, Mugenzi P, Mazarati JB, Attaleb M, El Mzibri M. Association between glutathione peroxidase 1 codon 198 variant and the occurrence of breast cancer in Rwanda. Mol Genet Genomic Med. 2018;6(2):268-75. [DOI:10.1002/mgg3.367] [PMID] [PMCID]
31. Jablonska E, Gromadzinska J, Peplonska B, Fendler W, Reszka E, Krol MB, et al. Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC cancer. 2015;15(1):1-12. [DOI:10.1186/s12885-015-1680-4] [PMID] [PMCID]
32. Tang T, Prior S, Li K, Ireland H, Bain S, Hurel S, et al. Association between the rs1050450 glutathione peroxidase-1 (C> T) gene variant and peripheral neuropathy in two independent samples of subjects with diabetes mellitus. Nutr Metab Cardiovasc Dis. 2012;22(5):417-25. [DOI:10.1016/j.numecd.2010.08.001] [PMID]
33. Kuzuya M, Ando F, Iguchi A, Shimokata H. Glutathione peroxidase 1 Pro198Leu variant contributes to the metabolic syndrome in men in a large Japanese cohort. Am J Clin Nutr. 2008;87(6):1939-44. [DOI:10.1093/ajcn/87.6.1939] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb