Volume 12, Issue 2 (Vol.12 No.2 Jul 2023)                   rbmb.net 2023, 12(2): 318-331 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Al-Naqshbandi A A, Nafee Darogha S, Asaaf Maulood K. Genotypic and Allelic Prevalence of the TGF- Β1 +869 C/T SNP and Their Relationship to Seminogram in Infertile Males. rbmb.net 2023; 12 (2) :318-331
URL: http://rbmb.net/article-1-1192-en.html
Department of Biology, College of Education, Scientific Department, University of Salahaddin, Kurdistan Region, Iraq.
Abstract:   (1193 Views)
Background: The influence of cytokine in the reproductive system is becoming increasingly important. The polymorphisms of the transforming growth factor-β1 (TGF-β1) gene are involved in male infertility. This study aimed to demonstrate the association between TGF-β1 and infertility and to investigate its impact on semen quality.
Methods: In this case-control study, serum TGF-β1 concentration was measured in 144 patients diagnosed with infertility and 40 fertile males by enzyme-linked immunosorbent assay (ELISA). The tetra-amplification refractory mutation system-PCR (T-ARMS-PCR) analysis was performed to detect the genotyping of the TGF-β1 (+869 C/T) (rs1800470) SNPs gene.
Results: Serum concentration of TGF-β1 was less in infertile males compared to fertile ones. The detected and more effective genotypes and alleles of TGF-β1 gene polymorphic on male infertility were, in normozoospermic group, CT genotype, probability (p)= 0.45, relative risk (RR)= 1.56, confidence intervals (CI): 0.58–4.22, and T allele (p= 0.46, RR= 1.32, CI: 0.65—2.69), in oligozoospermic and azoospermic groups, CC genotype (p= 0.32, RR= 1.58, CI: 0.73–3.41), (p= 0.013, RR= 3.50, CI: 1.40–8.73), and allele C (p= 0.44, RR= 1.32, CI: 0.73–2.38), (p= 0.06, RR= 2.14, CI: 1.02–4.50), respectively. The recessive model (TT+CT) showed increased risk among normozoospermic group (p=0.44, RR=1.67, CI:0.60-4.62). The serum concentration of TGF-β1 with CT and TT genotypes was less than that of CC genotype. TGF-β1 C/T genotype correlated with low sperm number, high immotile sperm, and high abnormal sperm morphology.
Conclusions: Our study revealed that the TGF-β1(rs1800470) gene polymorphisms are associated negatively with semen quality.
Full-Text [PDF 386 kb]   (560 Downloads)    
Type of Article: Original Article | Subject: Immunology
Received: 2023/06/12 | Accepted: 2023/08/18 | Published: 2023/12/20

References
1. Rybska M, Knap S, Stefańska K, Jankowski M, Chamier-Gliszczyńska A, Popis M, et al. Transforming growth factor (TGF)-is it a key protein in mammalian reproductive biology?. Med J Cell Biol. 2018;6(3):125-30. [DOI:10.2478/acb-2018-0020]
2. Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. [DOI:10.1101/cshperspect.a021873] [PMID] []
3. Johnson L, Thompson DL Jr, Varner DD. Role of Sertoli cell number and function on regulation of spermatogenesis. Anim Reprod Sci. 2008;105(1-2):23-51. [DOI:10.1016/j.anireprosci.2007.11.029] [PMID]
4. Wang T, Zhang D, Song T, Sun M, Zhang J. Advances in research of TGF-Β1 in human testis. Food Sci Technol. 2022;42(e22521). [DOI:10.1590/fst.22521]
5. Stukenborg J-B, Schlatt S, Simoni M, Yeung C-H, Elhija MA, Luetjens CM, et al. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod.. 2009;15(9):521-9. [DOI:10.1093/molehr/gap052] [PMID]
6. Loras B, Vételé F, El Malki A, Rollet J, Soufir JC, Benahmed M. Seminal transforming growth factor-beta in normal and infertile men. Hum Reprod. 1999;14(6):1534-9. [DOI:10.1093/humrep/14.6.1534] [PMID]
7. Al-Msaid HLF, Al-Sallami ASM. Study the level of cytokine in unexplained and idiopathic infertile men. J Pharm Sci & Rese. 2018;10(4):808-11.
8. von Wolff M, Nowak O, Pinheiro RM, Strowitzki T. Seminal plasma--immunomodulatory potential in men with normal and abnormal sperm count. Eur J Obstet Gynecol Reprod Biol. 2007;134(1):73-8. [DOI:10.1016/j.ejogrb.2007.01.009] [PMID]
9. Ben Ali H. Effect of Seminal Transforming Growth Factorß1 (TGFß1) and Glutathione on Apoptosis in Spermatozoa from Tunisian Infertile Men. Andrology (Los Angel). 2017;6(1):21.1000172. [DOI:10.4172/2472-1212.1000172]
10. Yao HH-C, Ungewitter E, Franco H, Capel B. Establishment of fetal Sertoli cells and their role in testis morphogenesis. Sertoli cell biology: Elsevier; 2015: 57-79. [DOI:10.1016/B978-0-12-417047-6.00002-8] []
11. Oral O, Uchida I, Eto K, Nakayama Y, Nishimura O, Hirao Y, et al. Promotion of spermatogonial proliferation by neuregulin 1 in newt (Cynops pyrrhogaster) testis. Mech Dev. 2008;125(9-10):906-17. [DOI:10.1016/j.mod.2008.06.004] [PMID]
12. Nagaoka SI, Saitou M. Reconstitution of Female Germ Cell Fate Determination and Meiotic Initiation in Mammals. Cold Spring Harb Symp Quant Biol. 2017;82:213-222. [DOI:10.1101/sqb.2017.82.033803] [PMID]
13. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. N Engl J Med. 2000;342(18):1350-8. [DOI:10.1056/NEJM200005043421807] [PMID]
14. Martelossi Cebinelli GC, Paiva Trugilo K, Badaró Garcia S, Brajão de Oliveira K. TGF-β1 functional polymorphisms: a review. Eur Cytokine Netw. 2016;27(4):81-89. [DOI:10.1684/ecn.2016.0382] [PMID]
15. Khani M, Amani D, Taheripanah R, Sanadgol N, Feizollahzadeh S, Rahmani Z. Transforming growth factor beta-1 (TGF-β1) gene single nucleotide polymorphisms (SNPs) and susceptibility to pre-eclampsia in Iranian women: A case-control study. Pregnancy Hypertens. 2015;5(4):267-72. [DOI:10.1016/j.preghy.2015.01.002] [PMID]
16. Eskandari E, Metanat M, Pahlevani E, Nakhzari-Khodakheir T. Association between TGFβ1 polymorphisms and chronic hepatitis B infection in an Iranian population. Rev Soc Bras Med Trop. 2017;50(3):301-308. [DOI:10.1590/0037-8682-0266-2016] [PMID]
17. Young JC, Wakitani S, Loveland KL. TGF-β superfamily signaling in testis formation and early male germline development. Semin Cell Dev Biol. 2015;45:94-103. [DOI:10.1016/j.semcdb.2015.10.029] [PMID]
18. Kwiatkowski W, Gray PC, Choe S. Engineering TGF-β superfamily ligands for clinical applications. Trends Pharmacol Sci. 2014;35(12):648-57. [DOI:10.1016/j.tips.2014.10.006] [PMID]
19. Kajdaniuk D, Marek B, Borgiel-Marek H, Kos-Kudła B. Transforming growth factor beta1 (TGFbeta1) in physiology and pathology. Endokrynol Pol. 2013;64(5):384-96. [DOI:10.5603/EP.2013.0022] [PMID]
20. Ziaeemehr A, Sharebiani H, Taheri H, Fazeli B. Secondary Infertility: A Neglected Aspect of Buerger's Disease. Rep Biochem Mol Biol. 2022;11(2):246.
21. Torki A, Amirmozafari N, Talebi M, Talebi A. Using the PCR and Blood Agar in Diagnosis of Semen Bacterial Contamination of Fertile and Infertile Men. Rep Biochem Mol Biol. 2021;10(3):402. [DOI:10.52547/rbmb.10.3.402] [PMID] []
22. Tongrueng S, Vongpralub T, Srimooltho W, Phasuk Y. Transforming growth factor beta1 in porcine seminal plasma on characteristic of sperm and reproductive efficiency in Sows. Sci Technol Asia. 2021:216-23.
23. Karamyshev AL, Tikhonova EB, Karamysheva ZN. Translational control of secretory proteins in health and disease. Int J Mol Sci. 2020;21(7):2538. [DOI:10.3390/ijms21072538] [PMID] []
24. Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, et al. A transforming growth factorβ1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 2003;63(10):2610-5.
25. Faria PC, Saba K, Neves AF, Cordeiro ER, Marangoni K, Freitas DG, et al. Transforming growth factor-beta 1 gene polymorphisms and expression in the blood of prostate cancer patients. CancerInvest. 2007;25(8):726-32. [DOI:10.1080/07357900701600921] [PMID]
26. Mališić E, Petrović N, Brengues M, Azria D, Matić IZ, Srbljak Ćuk I, et al. Association of polymorphisms in TGFB1, XRCC1, XRCC3 genes and CD8 T-lymphocyte apoptosis with adverse effect of radiotherapy for prostate cancer. Sci Rep. 2022;12(1):21306. [DOI:10.1038/s41598-022-25328-6] [PMID] []
27. Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev. 2012;64(1):16-64. [DOI:10.1124/pr.110.002790] [PMID] []
28. Holstein A-F, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol. 2003;1(1):1-16. [DOI:10.1186/1477-7827-1-1] []
29. Kolahian S, Sadri H, Larijani A, Hamidian G, Davasaz A. Supplementation of diabetic rats with leucine, zinc, and chromium: effects on function and histological structure of testes. Int J Vitam Nutr Res. 2015;85:311-21. [DOI:10.1024/0300-9831/a000244] [PMID]
30. Zhang J, Zhang X, Liu Y, Su Z, Dawar FU, Dan H, et al. Leucine mediates autophagosome-lysosome fusion and improves sperm motility by activating the PI3K/Akt pathway. Oncotarget. 2017;8(67):111807. [DOI:10.18632/oncotarget.22910] [PMID] []
31. Lin Y, Li J, Wang K, Fang Z, Che L, Xu S, et al. Effects of dietary L-leucine supplementation on testicular development and semen quality in boars. Front Vet Sci 2022; 9:904653. [DOI:10.3389/fvets.2022.904653] [PMID] []
32. Vellai T. How the amino acid leucine activates the key cell-growth regulator mTOR. Nature. 2021;596(7871):192-194. [DOI:10.1038/d41586-021-01943-7] [PMID]
33. Xu H, Shen L, Chen X, Ding Y, He J, Zhu J, et al. mTOR/P70S6K promotes spermatogonia proliferation and spermatogenesis in Sprague Dawley rats. Reprod Biomed Online. 2016;32(2):207-17. [DOI:10.1016/j.rbmo.2015.11.007] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb