Volume 12, Issue 3 (Vol.12 No.3 Oct 2023)                   rbmb.net 2023, 12(3): 374-385 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi Hadloo S, Mohseni Kouchesfahani H, Khanlarkhani A, Saeidifar M. Resistance Improvement and Sensitivity Enhancement of Cancer Therapy by a Novel Antitumor Candidate onto A2780 CP and A2780 S Cell Lines. rbmb.net 2023; 12 (3) :374-385
URL: http://rbmb.net/article-1-1194-en.html
Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
Abstract:   (524 Views)
Background: To overcome cisplatin resistance, the cytotoxicity of a novel antitumor agent on two ovarian cancer cell lines sensitive and resistant to cisplatin was investigated.

Methods: MTT assay and flow cytometry were performed to assess the cytotoxicity of a novel water-soluble Pd (II) complex, [Pd(bpy)(pyr-dtc)]NO3 (PBPD), on cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. Furthermore, variations in the expression of drug resistance gene cluster of differentiation 99 (CD99), signal transducer and activator of transcription 3 (STAT3), octamer-binding transcription factor 4 (OCT4), and multidrug resistance mutation 1 (MDR1) were evaluated using Real-Time PCR.

Results: The IC50 values of PBPD in resistant cells were higher than those in sensitive cells. Furthermore, PBPD has a deadlier effect on sensitive cells compared to resistant cells, and the cell survival rate is reduced over time. Flow cytometry revealed that PBPD enhanced the population of living-resistant cells while driving them to apoptosis. PBPD, on the other hand, has a greater effect on the living cell population and has dramatically shifted the population toward apoptosis and necrosis in the sensitive cells. Furthermore, gene expression analysis showed that when sensitive and resistant cells were treated with cisplatin, all resistance genes increased significantly relative to the control. In contrast to OCT4, MDR1, STAT3, and CD99 resistance genes were not significantly elevated in sensitive cells treated with PBPD compared to the control. Thus, the expression of resistance genes in resistant cells treated with PBPD was lower than cisplatin.

Conclusions: As a result, PBPD is a promising anticancer agent for CDDP-resistant ovarian cancer.
Full-Text [PDF 377 kb]   (258 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2023/06/18 | Accepted: 2023/09/15 | Published: 2024/02/25

References
1. Stewart C, Ralyea C, Lockwood S. Ovarian Cancer: An Integrated Review. Semin Oncol Nurs. 2019;35(2):151-156. [DOI:10.1016/j.soncn.2019.02.001] [PMID]
2. Baghal-Sadriforoush S, Bagheri M, Abdi Rad I, Sotoodeh Nejadnematalahi F. PI3K Inhibition Sensitize the Cisplatin-resistant Human Ovarian Cancer Cell OVCAR3 by Induction of Oxidative Stress. Rep Biochem Mol Biol. 2022;10(4):675-685. [DOI:10.52547/rbmb.10.4.675] [PMID] []
3. Ranasinghe R, Mathai ML, Zulli A. Cisplatin for cancer therapy and overcoming chemoresistance. Heliyon. 2022;8(9):e10608. [DOI:10.1016/j.heliyon.2022.e10608] [PMID] []
4. Kryczka J, Kryczka J, Czarnecka- Chrebelska KH, Brzeziańska- Lasota E. Molecular Mechanisms of Chemoresistance Induced by Cisplatin in NSCLC Cancer Therapy. Int J Mol Sci. 2021;22(16):8885. [DOI:10.3390/ijms22168885] [PMID] []
5. Ahmed Aglan S, Mohamad Zaki A, Sobhy El Sedfy A, Gaber El-Sheredy H, Hussein Elgaddar O. O6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer? Rep Biochem Mol Biol. 2022;11(1):20-29. [DOI:10.52547/rbmb.11.1.20] [PMID] []
6. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem. 2019;88:102925. [DOI:10.1016/j.bioorg.2019.102925] [PMID]
7. Kang J, D'Andrea AD, Kozono D. A DNA repair pathway-focused score for prediction of outcomes in ovarian cancer treated with platinum-based chemotherapy. J Natl Cancer Inst. 2012;104(9):670-81. [DOI:10.1093/jnci/djs177] [PMID] []
8. Tanaka M, Kataoka H, Mabuchi M, Sakuma S, Takahashi S, Tujii R, Akashi H, Ohi H, Yano S, Morita A, Joh T. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res. 2011;31(3):763-9.
9. Divsalar A, Bagheri MJ, Saboury AA, Mansoori-Torshizi H, Amani M. Investigation on the interaction of newly designed anticancer Pd(II) complexes with different aliphatic tails and human serum albumin. J Phys Chem B. 2009;113(42):14035-42. [DOI:10.1021/jp904822n] [PMID]
10. Kapdi AR, Fairlamb IJ. Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes. Chem Soci Rev. 2014;43(13):4751-77. [DOI:10.1039/C4CS00063C] [PMID]
11. Keter FK, Kanyanda S, Lyantagaye SS, Darkwa J, Rees DJ, Meyer M. In vitro evaluation of dichloro-bis(pyrazole)palladium(II) and dichloro-bis(pyrazole)platinum(II) complexes as anticancer agents. Cancer Chemother Pharmacol. 2008;63(1):127-38. [DOI:10.1007/s00280-008-0721-y] [PMID]
12. Guney E, Yilmaz VT, Ari F, Buyukgungor O, Ulukaya E. Synthesis, characterization, structures and cytotoxic activity of palladium (II) and platinum (II) complexes containing bis (2-pyridylmethyl) amine and saccharinate. Polyhedron. 2011;30(1):114-22. [DOI:10.1016/j.poly.2010.09.037]
13. Abu-Surrah AS, Abu Safieh KA, Ahmad IM, Abdalla MY, Ayoub MT, Qaroush AK, Abu-Mahtheieh AM. New palladium (II) complexes bearing pyrazole-based Schiff base ligands: Synthesis, characterization and cytotoxicity. Eur J Med Chem. 2010;45(2):471-5. [DOI:10.1016/j.ejmech.2009.10.029] [PMID]
14. Zalevskaya O, Gur'eva Y, Kutchin A, Hansford KA. Antimicrobial and Antifungal Activities of Terpene-Derived Palladium Complexes. Antibiotics (Basel). 2020;9(5):277. [DOI:10.3390/antibiotics9050277] [PMID] []
15. Tunc D, Dere E, Karakas D, Cevatemre B, Yilmaz VT, Ulukaya E. Cytotoxic and apoptotic effects of the combination of palladium (II) 5,5-diethylbarbiturate complex with bis(2-pyridylmethyl)amine and curcumin on non small lung cancer cell lines. Bioorg Med Chem. 2017;25(5):1717-1723. [DOI:10.1016/j.bmc.2017.01.043] [PMID]
16. Mansouri-Torshizi H, Shahraki S, Nezami ZS, Ghahghaei A, Najmedini S, Divsalar A, et al. Platinum (II)/palladium (II) complexes with n-propyldithiocarbamate and 2,2′-bipyridine: synthesis, characterization, biological activity and interaction with calf thymus DNA. Complex Metals. 2014;1(1):23-31. [DOI:10.1080/2164232X.2014.883288]
17. anaka M, Kataoka H, Yano S, Ohi H, Kawamoto K, Shibahara T, Mizoshita T, Mori Y, Tanida S, Kamiya T, Joh T. Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells. BMC Cancer. 2013;13:237. [DOI:10.1186/1471-2407-13-237] [PMID] []
18. Han Z, Feng J, Hong Z, Chen L, Li W, Liao S, Wang X, Ji T, Wang S, Ma D, Chen G, Gao Q. Silencing of the STAT3 signaling pathway reverses the inherent and induced chemoresistance of human ovarian cancer cells. Biochem Biophys Res Commun. 2013;435(2):188-94. [DOI:10.1016/j.bbrc.2013.04.087] [PMID]
19. Oyama Y, Shigeta S, Tokunaga H, Tsuji K, Ishibashi M, Shibuya Y, Shimada M, Yasuda J, Yaegashi N. CHD4 regulates platinum sensitivity through MDR1 expression in ovarian cancer: A potential role of CHD4 inhibition as a combination therapy with platinum agents. PLoS One. 2021;16(6):e0251079. [DOI:10.1371/journal.pone.0251079] [PMID] []
20. Loh SY, Mistry P, Kelland LR, Abel G, Harrap KR. Reduced drug accumulation as a major mechanism of acquired resistance to cisplatin in a human ovarian carcinoma cell line: circumvention studies using novel platinum (II) and (IV) ammine/amine complexes. Br J Cancer. 1992;66(6):1109-15. [DOI:10.1038/bjc.1992.419] [PMID] []
21. Pasello M, Manara MC, Scotlandi K. CD99 at the crossroads of physiology and pathology. J Cell Commun Signal. 2018;12(1):55-68. [DOI:10.1007/s12079-017-0445-z] [PMID] []
22. Wu J, Zhang L, Li H, Wu S, Liu Z. Nrf2 induced cisplatin resistance in ovarian cancer by promoting CD99 expression. Biochem Biophys Res Commun. 2019;518(4):698-705. [DOI:10.1016/j.bbrc.2019.08.113] [PMID]
23. Manara MC, Terracciano M, Mancarella C, Sciandra M, Guerzoni C, Pasello M, et al. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling. Oncotarget. 2016;7(48):79925-79942. [DOI:10.18632/oncotarget.13160] [PMID] []
24. Scotlandi K, Baldini N, Cerisano V, Manara MC, Benini S, Serra M, et al. CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res. 2000;60(18):5134-42.
25. Guerzoni C, Fiori V, Terracciano M, Manara MC, Moricoli D, Pasello M, et al. CD99 triggering in Ewing sarcoma delivers a lethal signal through p53 pathway reactivation and cooperates with doxorubicin. Clin Cancer Res. 2015;21(1):146-56. [DOI:10.1158/1078-0432.CCR-14-0492] [PMID]
26. Sen U, Shanavas S, Nagendra AH, Nihad M, Chaudhury D, Rachamalla HK, et al. Significance of Oct-4 transcription factor as a pivotal therapeutic target for CD44+ /24- mammary tumor initiating cells: Aiming at the root of the recurrence. Cell Biol Int. 2023 Apr;47(4):742-753. [DOI:10.1002/cbin.11978] [PMID]
27. Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology. 2010;52(2):528-39. [DOI:10.1002/hep.23692] [PMID]
28. Yuan Z, Liang X, Zhan Y, Wang Z, Xu J, Qiu Y, et al. Targeting CD133 reverses drug-resistance via the AKT/NF-κB/MDR1 pathway in colorectal cancer. Br J Cancer. 2020;122(9):1342-1353. [DOI:10.1038/s41416-020-0783-0] [PMID] []
29. Hoffmann U, Kroemer HK. The ABC transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metab Rev. 2004;36(3-4):669-701. [DOI:10.1081/DMR-200033473] [PMID]
30. Fang Z, Chen W, Yuan Z, Liu X, Jiang H. LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed Pharmacother. 2018;101:536-542. [DOI:10.1016/j.biopha.2018.02.130] [PMID]
31. Yin X, Zhang BH, Zheng SS, Gao DM, Qiu SJ, Wu WZ, Ren ZG. Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. J Hematol Oncol. 2015;8:23. [DOI:10.1186/s13045-015-0119-3] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb