Volume 12, Issue 3 (Vol.12 No.3 Oct 2023)                   rbmb.net 2023, 12(3): 495-511 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Elmorshdy Elsaeed Mohammed Elmorshdy S, Ahmed Shaker G, Helmy Eldken Z, Abdelbadie Salem M, Awadalla A, Mahmoud Abdel Shakour H, et al . Impact of Cerium Oxide Nanoparticles on Metabolic, Apoptotic, Autophagic and Antioxidant Changes in Doxorubicin-Induced Cardiomyopathy: Possible Underlying Mechanisms. rbmb.net 2023; 12 (3) :495-511
URL: http://rbmb.net/article-1-1199-en.html
Medical physiology department, Faculty of Medicine, Mansoura University, Egypt.
Abstract:   (607 Views)
Background: In the current study, the effects of cerium oxide nanoparticles (nanocerium; NC) on doxorubicin (DOX)-induced cardiomyopathy and its possible underlying mechanisms were addressed.

Methods: 32 adult male rats were allocated into 4 groups; i) control group, ii) NC group; rats received NC (0.2 mg/kg, i.p., daily), iii) DOX group; rats received DOX 4 mg/kg (2 injections with a 14-day interval), and iv) DOX+NC group as DOX but rats received NC. At the end of the experiment, ECG and ECHO recordings and assessments of the levels of cardiac enzymes (CK-MB, LDH), and myocardial oxidative stress (MDA, catalase, and GSH), the expression of LC3 and beclin1 (markers of autophagy), caspase3 (marker of apoptosis) by immunohistochemistry, the expression of acetyl-CoA carboxylase alpha (ACCA) by PCR, and 5’adenosine monophosphate-activated protein kinase (AMPK) levels in the heart tissues were performed.

Results: The DOX group displayed a prolonged corrected QT interval, an increase in cardiac enzymes (CK-MB and LDH), myocardial oxidative stress (high MDA with low catalase and GSH), expression of ACCA, caspase-3, beclin1, and LC3 in myocardial tissues, with reduction in myocardial AMPK levels, and myocardial contractility (low ejection fraction, and fractional shortening). On the other hand, administration of NC with DOX resulted in significant improvement of all studied parameters.

Conclusions: NC offers a cardioprotective effect against DOX-induced cardiomyopathy. This effect might be due to its antioxidant and antiapoptotic effects as well as to the modulation of autophagy and metabolic dysfunctions induced by DOX in the heart tissues.

Full-Text [PDF 563 kb]   (298 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2023/06/27 | Accepted: 2023/08/7 | Published: 2024/02/25

References
1. Jarvis S. Electrocardiogram 1: purpose, physiology and practicalities. Nurs Times. 2021;117(6):22-6.
2. McKenna WJ, Maron BJ, Thiene G. Classification, Epidemiology, and Global Burden of Cardiomyopathies. Circ Res. 2017;121(7):722-730. [DOI:10.1161/CIRCRESAHA.117.309711] [PMID]
3. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev. 2014;34(1):106-35. [DOI:10.1002/med.21280] [PMID]
4. Mobaraki M, Faraji A, Zare M, Dolati P, Ataei M, Manshadi HRD. Molecular Mechanisms of Cardiotoxicity: A Review on Major Side-effect of Doxorubicin.Indian J Pharm Sci. 2017;79(3):335-44. [DOI:10.4172/pharmaceutical-sciences.1000235]
5. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41-48. [DOI:10.1016/j.toxlet.2019.02.013] [PMID]
6. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239-47. [DOI:10.1038/35041687] [PMID]
7. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. 2021;22(9):4642. [DOI:10.3390/ijms22094642] [PMID] []
8. Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010;2010:453892. [DOI:10.1155/2010/453892] [PMID] []
9. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;6(2):109-20. [DOI:10.14336/AD.2014.0305] [PMID] []
10. Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol. 2006;41(3):389-405. [DOI:10.1016/j.yjmcc.2006.06.009] [PMID]
11. Granados-Principal S, El-Azem N, Pamplona R, Ramirez-Tortosa C, Pulido-Moran M, Vera-Ramirez L, Quiles JL, et al. Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer. Biochem Pharmacol. 2014;90(1):25-33. [DOI:10.1016/j.bcp.2014.04.001] [PMID]
12. Ikeda S, Zablocki D, Sadoshima J. The role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol. 2022;165:1-8. [DOI:10.1016/j.yjmcc.2021.12.006] [PMID] []
13. Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. Mol Ther Nucleic Acids. 2020;23:101-118. [DOI:10.1016/j.omtn.2020.10.039] [PMID] []
14. Sangomla S, Saifi MA, Khurana A, Godugu C. Nanoceria ameliorates doxorubicin induced cardiotoxicity: Possible mitigation via reduction of oxidative stress and inflammation. J Trace Elem Med Biol. 2018;47:53-62. [DOI:10.1016/j.jtemb.2018.01.016] [PMID]
15. Kumari P, Saifi MA, Khurana A, Godugu C. Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. J Trace Elem Med Biol. 2018;50:198-208. [DOI:10.1016/j.jtemb.2018.07.011] [PMID]
16. Gupta A. Redox-Active Solid State Materials and its Biomedical and Biosensing Applications. Electronic Theses and Dissertations. University of Central Florida STARS 2017; 5736.
17. Banavar S, Deshpande A, Sur S, Andreescu S. Ceria nanoparticle theranostics: harnessing antioxidant properties in biomedicine and beyond. J Phys Mater. 2021;4(4):42003. [DOI:10.1088/2515-7639/ac0594]
18. Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3(4):1411-20. [DOI:10.1039/c0nr00875c] [PMID]
19. Hussein AM, Eldosoky M, Handhle A, Elserougy H, Sarhan M, Sobh MA, et al. Effects of long-acting erythropoietin analog darbepoetin-α on adriamycin-induced chronic nephropathy. Int Urol Nephrol. 2016;48(2):287-97. [DOI:10.1007/s11255-015-1171-1] [PMID]
20. Ibrahim HAM, Hussein AM, Gabr M, El-Saeed RA, Ammar OA, Mosa AAH, Abdel-Aziz AF. Effect of Melatonin on Alpha Synuclein and Autophagy in Dopaminergic Neuronal Differentiation of Adipose Mesenchymal Stem Cells. Rep Biochem Mol Biol. 2023;12(1):13-26. [DOI:10.21203/rs.3.rs-1746786/v1]
21. Chacko SM, DhanyaKrishnan R, Nevin KG. Differential Effects of p-Coumaric Acid in relieving Doxorubicin induced Cardiotoxicity in Solid Tumour Bearing and Non-tumor Bearing Mice. J Biol Act Prod from Nature. 2021;11(2):138-61. [DOI:10.1080/22311866.2021.1903997]
22. Wang J, Yao L, Wu X, Guo Q, Sun S, Li J. Protection against Doxorubicin-Induced Cardiotoxicity through Modulating iNOS/ARG 2 Balance by Electroacupuncture at PC6. Oxid Med Cell Longev. 2021;2021:6628957. [DOI:10.1155/2021/6628957] [PMID] []
23. Podyacheva EY, Kushnareva EA, Karpov AA, Toropova YG. Analysis of Models of Doxorubicin-Induced Cardiomyopathy in Rats and Mice. A Modern View From the Perspective of the Pathophysiologist and the Clinician. Front Pharmacol. 2021;12:670479. [DOI:10.3389/fphar.2021.670479] [PMID] []
24. Warhol A, George SA, Obaid SN, Efimova T, Efimov IR. Differential cardiotoxic electrocardiographic response to doxorubicin treatment in conscious versus anesthetized mice. Physiol Rep. 2021;9(15):e14987. [DOI:10.14814/phy2.14987] [PMID] []
25. Salouege I, Ben Ali R, Ben Saïd D, Elkadri N, Kourda N, Lakhal M, Klouz A. Means of evaluation and protection from doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. J Cancer Res Ther. 2014;10(2):274-8. [DOI:10.4103/0973-1482.136557] [PMID]
26. Abdo MELS, Osman AS, Khorshid OA, El-Farouk LO, Kamel MM. Comparative study of the protective effect of metformin and sitagliptin against doxorubicin-induced cardiotoxicity in rats. Clin Pharmacol Biopharm. 2017;6:174.
27. Agaba A, Ebada M, Emara H. Protective Effect of Metformin on Doxorubicin-induced Cardiomyopathy in the Adult Male Albino Rats (Light and Electron Microscopic Study). Al-Azhar Int Med J. 2021;2(4):1-8. [DOI:10.21608/aimj.2021.72417.1458]
28. Ivanová M, Dovinová I, Okruhlicová L, Tribulová N, Simončíková P, Barteková M, et al. Chronic cardiotoxicity of doxorubicin involves activation of myocardial and circulating matrix metalloproteinases in rats. Acta Pharmacol Sin. 2012;33(4):459-69. [DOI:10.1038/aps.2011.194] [PMID] []
29. Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res. 2007;73(3):549-59. [DOI:10.1016/j.cardiores.2006.11.031] [PMID] []
30. Zhou L, Han Y, Yang Q, Xin B, Chi M, Huo Y, et al. Scutellarin attenuates doxorubicin-induced oxidative stress, DNA damage, mitochondrial dysfunction, apoptosis and autophagy in H9c2 cells, cardiac fibroblasts and HUVECs. Toxicol In Vitro. 2022;82:105366. [DOI:10.1016/j.tiv.2022.105366] [PMID]
31. Abdullah CS, Alam S, Aishwarya R, Miriyala S, Bhuiyan MAN, Panchatcharam M, et al. Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Sci Rep. 2019;9(1):2002. [DOI:10.1038/s41598-018-37862-3] [PMID] []
32. Carrasco R, Castillo RL, Gormaz JG, Carrillo M, Thavendiranathan P. Role of Oxidative Stress in the Mechanisms of Anthracycline-Induced Cardiotoxicity: Effects of Preventive Strategies. Oxid Med Cell Longev. 2021;2021:8863789. [DOI:10.1155/2021/8863789] [PMID] []
33. Xia P, Chen J, Liu Y, Fletcher M, Jensen BC, Cheng Z. Doxorubicin induces cardiomyocyte apoptosis and atrophy through cyclin-dependent kinase 2-mediated activation of forkhead box O1. J Biol Chem. 2020;295(13):4265-4276. [DOI:10.1074/jbc.RA119.011571] [PMID] []
34. Hosseini M, Mozafari M. Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. Materials (Basel). 2020;13(14):3072. [DOI:10.3390/ma13143072] [PMID] []
35. Bartlett JJ, Trivedi PC, Pulinilkunnil T. Autophagic dysregulation in doxorubicin cardiomyopathy. J Mol Cell Cardiol. 2017;104:1-8. [DOI:10.1016/j.yjmcc.2017.01.007] [PMID]
36. Dhingra R, Margulets V, Chowdhury SR, Thliveris J, Jassal D, Fernyhough P, et al. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc Natl Acad Sci U S A. 2014;111(51):E5537-44. [DOI:10.1073/pnas.1414665111] [PMID] []
37. Wang X, Wang XL, Chen HL, Wu D, Chen JX, Wang XX, et al. Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochem Pharmacol. 2014;88(3):334-50. [DOI:10.1016/j.bcp.2014.01.040] [PMID]
38. Ghotaslou A, Samii A, Boustani H, Kiani Ghalesardi O, Shahidi M. AMG-232, a New Inhibitor of MDM-2, Enhance Doxorubicin Efficiency in Pre-B Acute Lymphoblastic Leukemia Cells. Rep Biochem Mol Biol. 2022;11(1):111-124. [DOI:10.52547/rbmb.11.1.111] [PMID] []
39. Li S, Wang W, Niu T, Wang H, Li B, Shao L, et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev. 2014;2014:748524. [DOI:10.1155/2014/748524] [PMID] []
40. Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, et al. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation. 2016;133(17):1668-87. [DOI:10.1161/CIRCULATIONAHA.115.017443] [PMID] []
41. Chen Z, Geng Y, Gao R, Zhong H, Chen J, Mu X, et al. Maternal exposure to CeO2NPs derails placental development through trophoblast dysfunction mediated by excessive autophagy activation. J Nanobiotechnology. 2022;20(1):131. [DOI:10.1186/s12951-022-01334-8] [PMID] []
42. Kawaguchi T, Takemura G, Kanamori H, Takeyama T, Watanabe T, Morishita K, et al. Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovasc Res. 2012;96(3):456-65. [DOI:10.1093/cvr/cvs282] [PMID]
43. Wang S, Song P, Zou MH. Inhibition of AMP-activated protein kinase α (AMPKα) by doxorubicin accentuates genotoxic stress and cell death in mouse embryonic fibroblasts and cardiomyocytes: role of p53 and SIRT1. J Biol Chem. 2012;287(11):8001-12. [DOI:10.1074/jbc.M111.315812] [PMID] []
44. Kawaguchi T, Takemura G, Kanamori H, Takeyama T, Watanabe T, Morishita K, Ogino A, et al. Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovasc Res. 2012;96(3):456-65. [DOI:10.1093/cvr/cvs282] [PMID]
45. Tokarska-Schlattner M, Zaugg M, da Silva R, Lucchinetti E, Schaub MC, Wallimann T, Schlattner U. Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol. 2005;289(1):H37-47. [DOI:10.1152/ajpheart.01057.2004] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb