Volume 12, Issue 2 (Vol.12 No.2 Jul 2023)                   rbmb.net 2023, 12(2): 306-317 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aminzadeh S, Salehcheh M, Khodayar M J, Goudarzi G, Hemmati A A, Khorsandi L S et al . The Impact of Metformin on Dust-Induced Histopathological Changes and Oxidative Stress in the Liver: An Insight into Dust Concentration and Liver Biomarkers in Animal Models. rbmb.net 2023; 12 (2) :306-317
URL: http://rbmb.net/article-1-1201-en.html
Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran & Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Abstract:   (743 Views)
Background: Environmental pollution has a profound impact on both human and animal life. Khuzestan province, which has been plagued by intense dust storms and pollution for decades, is the focus of this study. The research aims to investigate the protective effects of metformin against the toxicity of particulate matter in the livers of rats.

Methods: Male Wistar rats were selected for the study and divided into six groups: a control group, Metformin-treated groups, Iraqi dust-exposed group (Iraqi-D), Local dust-exposed group (Local-D), Iraqi dust-exposed with Metformin treatment group (Iraqi-D+Metformin), and Local dust-exposed with Metformin treatment group (Local-D+Metformin). The rats were exposed to local and Iraqi dust through a nebulizer and received oral metformin for a duration of 21 days. At the end of the intervention, liver biomarkers and oxidative stress factors were evaluated enzymatically.

Results: The study revealed that rats exposed to Iraqi and local dust experienced a significant increase in liver biomarkers, including aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALK) levels, alongside a decrease in glutathione (GSH) concentrations and an increase in malondialdehyde (MDA) levels. However, treatment with metformin was effective in preventing the increase in these biomarkers, restoring GSH levels, and averting the rise in MDA levels, as compared to the control group.

Conclusion: Exposure to particulate matter from Iraq and the local region can induce alterations in biomarkers and oxidative stress levels in the rat liver, and these effects can be mitigated through metformin treatment.
Full-Text [PDF 644 kb]   (379 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2023/06/29 | Accepted: 2023/09/15 | Published: 2023/12/20

References
1. VoPham T. Environmental risk factors for liver cancer and nonalcoholic fatty liver disease. Curr Epidemiol Rep. 2019;6:50-66. [DOI:10.1007/s40471-019-0183-2] [PMID] []
2. Araujo JA. Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual Atmos Health. 2011;4:79-93. [DOI:10.1007/s11869-010-0101-8] [PMID] []
3. Li R, Zhang M, Wang Y, Yung KKL, Su R, Li Z, et al. Effects of sub-chronic exposure to atmospheric PM2. 5 on fibrosis, inflammation, endoplasmic reticulum stress and apoptosis in the livers of rats. Toxicol Res. 2018;7(2):271-82. [DOI:10.1039/C7TX00262A] [PMID] []
4. Dauda Y, Sandabe U, Sani S, Aka L, Ikaimase V. Effects of dust particles on body weight and some haematological parameters in rats in Maiduguri metropolis, Nigeria. Comp Clin Path. 2016;25:925-32. [DOI:10.1007/s00580-016-2282-5]
5. Dewi S, Yulhasri Y, Mulyawan W. The Impact of Intermittent Hypobaric Hypoxia Exposures on Triacylglycerol Synthesis in Rat Liver. Rep Biochem Mol Biol. 2021;10(3):437. [DOI:10.52547/rbmb.10.3.437] [PMID] []
6. Mandal A, Paul S. Liver enzyme status and cardiovascular parameters of construction workers from West Bengal, India. J Hum Ergol. 2016;45(2):33-47.
7. Noroozi M, Akhgari M, Abdollahi A. Occupational exposure to paving asphalt fumes' impact on liver and kidney function test parameters. Int J Med Toxicol Forensic Med. 2021;11(1):29730. [DOI:10.32598/ijmtfm.v11i1.29730]
8. Qiu W, Zhou Y, He H, Wang B, Mu G, Zhou M, et al. Short-term effects of air pollution on liver function among urban adults in China. Atmos Environ. 2021;245:118011. [DOI:10.1016/j.atmosenv.2020.118011]
9. Dey T, Gogoi K, Unni B, Bharadwaz M, Kalita M, Ozah D, et al. Role of environmental pollutants in liver physiology: special references to peoples living in the oil drilling sites of Assam. PloS one. 2015;10(4):e0123370. [DOI:10.1371/journal.pone.0123370] [PMID] []
10. Wang G, Xu Y, Huang L, Wang K, Shen H, Li Z. Pollution characteristics and toxic effects of PM 1.0 and PM 2.5 in Harbin, China. Environ Sci Pollut Res. 2021;28:13229-42. [DOI:10.1007/s11356-020-11510-8] [PMID]
11. Zhang J, Zhang L, Chen Y, Wang X, Hou A, Dai L. Intervention effect of Qingzao Runfei Huazhuo Xingxue decoction on PM2. 5-induced pulmonary injury in mice. Zhonghua wei Zhong Bing ji jiu yi xue. 2017;29(5):465-8.
12. Eteshola EO, Haupt DA, Koos SI, Siemer LA, Morris Jr DL. The role of metal ion binding in the antioxidant mechanisms of reduced and oxidized glutathione in metal-mediated oxidative DNA damage. Metallomics. 2020;12(1):79-91. [DOI:10.1039/c9mt00231f] [PMID]
13. Mohseni M, Khosravi F, Mohadjerani M, Chaichi M. Biosorption of lead and copper by heavy metal resistance bacterium using Fourier Transform Infrared Spectrophotometer (FT IR). Med Lab J. 2014;8(3):30-9.
14. Shi T, Duffin R, Borm PJ, Li H, Weishaupt C, Schins RP. Hydroxyl-radical-dependent DNA damage by ambient particulate matter from contrasting sampling locations. Environ Res. 2006;101(1):18-24. [DOI:10.1016/j.envres.2005.09.005] [PMID]
15. Zhu Z, Wu H, Su W, Shi R, Li P, Liao Y, et al. Effects of Total flavonoids from exocarpium citri grandis on air pollution particle‐induced pulmonary inflammation and oxidative stress in mice. J Food Sci. 2019;84(12):3843-9. [DOI:10.1111/1750-3841.14966] [PMID]
16. Chen Y, Luo X-S, Zhao Z, Chen Q, Wu D, Sun X, et al. Summer-winter differences of PM2. 5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. Ecotoxicol Environ Saf. 2018;165:505-9. [DOI:10.1016/j.ecoenv.2018.09.034] [PMID]
17. Radan M, Dianat M, Badavi M, Mard SA, Bayati V, Goudarzi G. In vivo and in vitro evidence for the involvement of Nrf2-antioxidant response element signaling pathway in the inflammation and oxidative stress induced by particulate matter (PM10): the effective role of gallic acid. Free Radic Res. 2019;53(2):210-25. [DOI:10.1080/10715762.2018.1563689] [PMID]
18. Ren H, Lu J, Ning J, Su X, Tong Y, Chen J, et al. Exposure to fine particulate matter induces self-recovery and susceptibility of oxidative stress and inflammation in rat lungs. Environ Sci Pollut Res. 2020;27:40262-76. [DOI:10.1007/s11356-020-10029-2] [PMID]
19. Barath S, Mills NL, Lundbäck M, Törnqvist H, Lucking AJ, Langrish JP, et al. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Part Fibre Toxicol. 2010;7:1-11. [DOI:10.1186/1743-8977-7-19] [PMID] []
20. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15(4):316-28. [DOI:10.1016/j.numecd.2005.05.003] [PMID]
21. Chen C, Arjomandi M, Balmes J, Tager I, Holland N. Effects of chronic and acute ozone exposure on lipid peroxidation and antioxidant capacity in healthy young adults. Environ Health Perspect. 2007;115(12):1732-7. [DOI:10.1289/ehp.10294] [PMID] []
22. Gönenç A, Özkan Y, Torun M, Şimşek B. Plasma malondialdehyde (MDA) levels in breast and lung cancer patients. J Clin Pharm Ther. 2001;26(2):141-4. [DOI:10.1046/j.1365-2710.2001.00334.x] [PMID]
23. Barregard L, Sällsten G, Andersson L, Almstrand A-C, Gustafson P, Andersson M, et al. Experimental exposure to wood smoke: effects on airway inflammation and oxidative stress. J Occup Environ Med. 2008;65(5):319-24. [DOI:10.1136/oem.2006.032458] [PMID]
24. He L, Cui X, Xia Q, Li F, Mo J, Gong J, et al. Effects of personal air pollutant exposure on oxidative stress: Potential confounding by natural variation in melatonin levels. Int J Hyg Environ Health. 2020;223(1):116-23. [DOI:10.1016/j.ijheh.2019.09.012] [PMID]
25. Wu X, Lintelmann J, Klingbeil S, Li J, Wang H, Kuhn E, et al. Determination of air pollution-related biomarkers of exposure in urine of travellers between Germany and China using liquid chromatographic and liquid chromatographic-mass spectrometric methods: a pilot study. Biomarkers. 2017;22(6):525-36. [DOI:10.1080/1354750X.2017.1306753] [PMID]
26. Gong J, Zhu T, Kipen H, Wang G, Hu M, Ohman-Strickland P, et al. Malondialdehyde in exhaled breath condensate and urine as a biomarker of air pollution induced oxidative stress. J Expo Sci Environ Epidemiol. 2013;23(3):322-7. [DOI:10.1038/jes.2012.127] [PMID] []
27. Gong J, Zhu T, Kipen H, Wang G, Hu M, Guo Q, et al. Comparisons of ultrafine and fine particles in their associations with biomarkers reflecting physiological pathways. Environ Sci Technol Lett. 2014;48(9):5264-73. [DOI:10.1021/es5006016] [PMID] []
28. Li Y, Fu S, Li E, Sun X, Xu H, Meng Y, et al. Modulation of autophagy in the protective effect of resveratrol on PM2. 5‐induced pulmonary oxidative injury in mice. Phytother Res 2018;32(12):2480-6. [DOI:10.1002/ptr.6187] [PMID]
29. Fanaei H, Mard SA, Sarkaki A, Goudarzi G, Khorsandi L. Gallic acid treats dust-induced NAFLD in rats by improving the liver's anti-oxidant capacity and inhibiting ROS/NFκβ/TNFα inflammatory pathway. Iran J Basic Med Sci. 2021;24(2):240.
30. Valacchi G, Sticozzi C, Pecorelli A, Cervellati F, Cervellati C, Maioli E. Cutaneous responses to environmental stressors. Ann N Y Acad Sci ANN NY ACAD SCI. 2012;1271(1):75-81. [DOI:10.1111/j.1749-6632.2012.06724.x] [PMID] []
31. Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151(2):362-7. [DOI:10.1016/j.envpol.2007.06.012] [PMID]
32. Vierkötter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Krämer U, et al. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol. 2010;130(12):2719-26. [DOI:10.1038/jid.2010.204] [PMID]
33. Liu Q, Xu C, Ji G, Liu H, Shao W, Zhang C, et al. Effect of exposure to ambient PM2. 5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies. J Biol Chem. 2017;31(2):130. [DOI:10.7555/JBR.31.20160071] [PMID] []
34. Nyhan MM, Rice M, Blomberg A, Coull BA, Garshick E, Vokonas P, et al. Associations between ambient particle radioactivity and lung function. Environ Int. 2019;130:104795. [DOI:10.1016/j.envint.2019.04.066] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb