Volume 12, Issue 3 (Vol.12 No.3 Oct 2023)                   rbmb.net 2023, 12(3): 476-486 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zeraatiannejad M, Mokhtari M J, Borhani-Haghighi A. Association of Circulating Circular RNAs (hg38_circ_0008980, and CircDLGAP4) in Diagnosis, Diseases Severity, and Prognosis of Ischemic Stroke. rbmb.net 2023; 12 (3) :476-486
URL: http://rbmb.net/article-1-1205-en.html
Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran.
Abstract:   (536 Views)
Background: Fast diagnosing ischemic stroke (IS) is a critical issue in clinical studies, as it allows more effective therapy and stops the progression of IS. The blood level of circular RNAs (CircRNAs) after stroke may be a rapid diagnostic marker.

Methods: In this study, the blood level of circRNAs was evaluated using a real-time polymerase chain reaction (PCR). We used logistic and linear regression analysis to assess the potential of circRNAs levels with the risk of IS.

Results: circRNA DLG associated protein 4 (CircDLGAP4) was decreased in patients compared with controls, and logistic regression showed its expression negatively associated with IS risk. The expression level of human genome version 38_Circular_0008980 (hg38_circ_0008980) was reduced significantly in patients with small vessel disease (SVD), and the linear regression analysis showed a negative relationship between hg38_circ_0008980 expressions with SVD subtype. hg38_circ_0008980 expression relative to controls showed a significant association with IS risk.

Conclusions: Taken together, we found a significant decrease in the level of hg38_circ_0008980 after IS; it may act as a novel circRNA in IS pathophysiology with a positive correlation with stroke severity.
Full-Text [PDF 612 kb]   (295 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/07/10 | Accepted: 2023/09/26 | Published: 2024/02/25

References
1. Tabrizi R, Lankarani KB, Kardeh B, Akbari H, Azarpazhooh MR, Borhani-Haghighi A. A Comprehensive Systematic Review and Meta-analysis on the Risk Factors of Stroke in Iranian Population. Arch Iran Med. 2021;24(1):64-77. [DOI:10.34172/aim.2021.10] [PMID]
2. Borhani-Haghighi A, Safari R, Heydari ST, Soleimani F, Sharifian M, Yektaparast Kashkuli S, et al. Hospital mortality associated with stroke in southern iran. Iran J Med Sci. 2013;38(4):314-20.
3. Anathhanam S, Hassan A. Mimics and chameleons in stroke. Clin Med (Lond). 2017;17(2):156-160. [DOI:10.7861/clinmedicine.17-2-156] [PMID] []
4. Rezaei M, Mokhtari MJ, Bayat M, Safari A, Dianatpuor M, Tabrizi R, Asadabadi T, Borhani-Haghighi A. Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk. BMC Neurol. 2021;21(1):54. [DOI:10.1186/s12883-021-02081-3] [PMID] []
5. Zhu M, Li N, Luo P, Jing W, Wen X, Liang C, Tu J. Peripheral Blood Leukocyte Expression of lncRNA MIAT and Its Diagnostic and Prognostic Value in Ischemic Stroke. J Stroke Cerebrovasc Dis. 2018;27(2):326-337. [DOI:10.1016/j.jstrokecerebrovasdis.2017.09.009] [PMID]
6. Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, et al. Long Noncoding RNA H19 Promotes Neuroinflammation in Ischemic Stroke by Driving Histone Deacetylase 1-Dependent M1 Microglial Polarization. Stroke. 2017;48(8):2211-2221. [DOI:10.1161/STROKEAHA.117.017387] [PMID]
7. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381-8. [DOI:10.1080/15476286.2015.1020271] [PMID] []
8. Lu D, Xu AD. Mini Review: Circular RNAs as Potential Clinical Biomarkers for Disorders in the Central Nervous System. Front Genet. 2016;7:53. [DOI:10.3389/fgene.2016.00053]
9. Abdelgwad M, Zakaria R, Marzouk S, Sabry D, Ahmed R, Badary HA, Samir M. The Emerging Role of Circular RNA Homeodomain Interacting Protein Kinase 3 and Circular RNA 0046367 through Wnt/Beta-Catenin Pathway on the Pathogenesis of Nonalcoholic Steatohepatitis in Egyptian Patients. Rep Biochem Mol Biol. 2023 Jan;11(4):614-625. [DOI:10.52547/rbmb.11.4.614] [PMID] []
10. Lin SP, Ye S, Long Y, Fan Y, Mao HF, Chen MT, Ma QJ. Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun. 2016;471(1):52-6. https://doi.org/10.1016/0006-291X(91)91332-7 [DOI:10.1016/j.bbrc.2016.01.183]
11. Erratum: Bai et al., "Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity". J Neurosci. 2020;40(44):8601. [DOI:10.1523/JNEUROSCI.2320-20.2020] [PMID] []
12. Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP. Long non-coding RNAs in ischemic stroke. Cell Death Dis. 2018;9(3):281. [DOI:10.1038/s41419-018-0282-x] [PMID] []
13. Lu D, Ho ES, Mai H, Zang J, Liu Y, Li Y, et al. Identification of Blood Circular RNAs as Potential Biomarkers for Acute Ischemic Stroke. Front Neurosci. 2020;14:81. [DOI:10.3389/fnins.2020.00081] [PMID] []
14. Ostolaza A, Blanco-Luquin I, Urdánoz-Casado A, Rubio I, Labarga A, Zandio B, et al Circular RNA expression profile in blood according to ischemic stroke etiology. Cell Biosci. 2020;10:34. [DOI:10.1186/s13578-020-00394-3] [PMID] []
15. Jarlstad Olesen MT, S Kristensen L. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 2021;65(4):685-696. [DOI:10.1042/EBC20200060] [PMID]
16. Liu C, Zhang C, Yang J, Geng X, Du H, Ji X, Zhao H. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget. 2017;8(49):86535-86547. [DOI:10.18632/oncotarget.21238] [PMID] []
17. Mehta SL, Pandi G, Vemuganti R. Circular RNA expression Profiles Alter Significantly in Mouse Brain after Transient Focal Ischemia. Stroke. 2017;48(9):2541-8. [DOI:10.1161/STROKEAHA.117.017469] [PMID] []
18. Bai Y, Zhang Y, Hua J, Yang X, Zhang X, Duan M, Zhu X, Huang W, Chao J, Zhou R, Hu G, Yao H. Silencing microRNA-143 protects the integrity of the blood-brain barrier: implications for methamphetamine abuse. Sci Rep. 2016;6:35642. [DOI:10.1038/srep35642] [PMID] []
19. Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, et al. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J Neurosci. 2018;38(1):32-50. [DOI:10.1523/JNEUROSCI.1348-17.2017] [PMID] []
20. Erratum: Bai et al., "Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity". J Neurosci. 2020;40(44):8601. [DOI:10.1523/JNEUROSCI.2320-20.2020] [PMID] []
21. Yang R, Xu B, Yang B, Fu J, Liu L, Amjad N, et al. Circular RNA Transcriptomic Analysis of Primary Human Brain Microvascular Endothelial Cells Infected with Meningitic Escherichia coli. Mol Ther Nucleic Acids. 2018;13:651-664. [DOI:10.1016/j.omtn.2018.10.013] [PMID] []
22. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344-e418. [DOI:10.1161/STR.0000000000000211]
23. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75(6):1334-1357. [DOI:10.1161/HYPERTENSIONAHA.120.15026] [PMID]
24. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27 Suppl 1:S5-S10. [DOI:10.2337/diacare.27.2007.S5] [PMID]
25. Williams LS, Yilmaz EY, Lopez-Yunez AM. Retrospective assessment of initial stroke severity with the NIH Stroke Scale. Stroke. 2000;31(4):858-62. [DOI:10.1161/01.STR.31.4.858] [PMID]
26. Nunn A, Bath PM, Gray LJ. Analysis of the Modified Rankin Scale in Randomised Controlled Trials of Acute Ischaemic Stroke: A Systematic Review. Stroke Res Treat. 2016;2016:9482876. [DOI:10.1155/2016/9482876] [PMID] []
27. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35-41. [DOI:10.1161/01.STR.24.1.35] [PMID]
28. Rajabi A, Dastmalchi N, Shokri N, Tayefeh-Gholami S, Yaghoubi SM, Safaralizadeh R. Expression Level of lncRNA CYTOR in Iranian Cervical Cancer Patients. Rep Biochem Mol Biol. 2023;12(1):120-126.
29. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101-8. [DOI:10.1038/nprot.2008.73] [PMID]
30. Zhu X, Ding J, Wang B, Wang J, Xu M. Circular RNA DLGAP4 is down-regulated and negatively correlates with severity, inflammatory cytokine expression and pro-inflammatory gene miR-143 expression in acute ischemic stroke patients. Int J Clin Exp Pathol. 2019;12(3):941-948.
31. Reina SA, Llabre MM, Allison MA, Wilkins JT, Mendez AJ, Arnan MK, et al. HDL cholesterol and stroke risk: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2015;243(1):314-9. [DOI:10.1016/j.atherosclerosis.2015.09.031] [PMID] []
32. Mitchell AB, Cole JW, McArdle PF, Cheng YC, Ryan KA, Sparks MJ, Mitchell BD, Kittner SJ. Obesity increases risk of ischemic stroke in young adults. Stroke. 2015;46(6):1690-2. [DOI:10.1161/STROKEAHA.115.008940] [PMID] []
33. Liu J, Rutten-Jacobs L, Liu M, Markus HS, Traylor M. Causal Impact of Type 2 Diabetes Mellitus on Cerebral Small Vessel Disease: A Mendelian Randomization Analysis. Stroke. 2018;49(6):1325-1331. [DOI:10.1161/STROKEAHA.117.020536] [PMID] []
34. Sanahuja J, Alonso N, Diez J, Ortega E, Rubinat E, Traveset A, et al. Increased Burden of Cerebral Small Vessel Disease in Patients With Type 2 Diabetes and Retinopathy. Diabetes Care. 2016;39(9):1614-20. [DOI:10.2337/dc15-2671] [PMID]
35. Bai S, Xiong X, Tang B, Ji T, Li X, Qu X, et al. Exosomal circ_DLGAP4 promotes diabetic kidney disease progression by sponging miR-143 and targeting ERBB3/NF-kappaB/MMP-2 axis. Cell Death Dis. 2020;11(11):1008. [DOI:10.1038/s41419-020-03169-3] [PMID] []
36. Tu WJ, Chao BH, Ma L, Yan F, Cao L, Qiu H, et al. Case-fatality, disability and recurrence rates after first-ever stroke: A study from bigdata observatory platform for stroke of China. Brain Res Bull. 2021;175:130-135. [DOI:10.1016/j.brainresbull.2021.07.020] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb