Volume 12, Issue 4 (Vol.12 No.4 Jan 2024)                   rbmb.net 2024, 12(4): 652-663 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Anetakis C, Mitka S, Chatzidimitriou M, Anagnostopoulos K, Lialiaris T. Vitamin D Binding Protein (DBP), Free Calcidiol, and Total Calcitriol in Adults from Northern Greece. rbmb.net 2024; 12 (4) :652-663
URL: http://rbmb.net/article-1-1224-en.html
Laboratory of Clinical Chemistry, Faculty of Biomedical Sciences, School of Health Sciences, Alexandrian Campus of International Hellenic University, 57400 Sindos, Thessaloniki, Greece.
Abstract:   (428 Views)
Background: An ongoing debate has been raised on whether is better to use total or free calcidiol as a screening test in the population.

Methods: In winter and summer, free calcidiol, total calcitriol, and vitamin D binding protein (DBP) concentrations were determined by immunoenzymatic assays in 326 adults (161 males, 165 females). These included 99 osteoporotic patients, 53 type 1 and 51 type 2 diabetics, and 123 athletic healthy persons, all from northern Greece.

Results: In the whole sample, free calcidiol mean concentrations differed significantly (p < 0.001) between males (5.53 pg/ml) and females (4.68 pg/ml). Free calcidiol was significantly greater in the athletic healthy group (6.02 pg/ml) than in the three patient groups, and lowest in the osteoporosis group (3.69 pg/ml). Total calcitriol mean concentration did not differ significantly between genders in the whole sample (p = 0.896) or in the study groups, except for type 2 diabetics (males 38.33 pg/ml, females 54.52 pg/ml, p = 0.001). It was significantly less in the osteoporotics (34.61 pg/ml) than in the athletic healthy group (41.65 pg/ml, p = 0.037) and type 1 diabetics (43.73 pg/ml, p = 0.030), whereas it did not differ significantly between the other study groups. The DBP mean concentrations were not significantly different between genders in the whole sample and the study groups nor among the study groups (p = 0.467).

Conclusions: Comparisons with our previously reported results of total calcidiol suggest the measurement of free calcidiol offers nothing more than that, and total calcitriol is not a sensitive measure for assessing vitamin D status.
Full-Text [PDF 322 kb]   (106 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2023/08/14 | Accepted: 2023/09/24 | Published: 2024/07/2

References
1. Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW. De-orphanization of Cytochrome P450 2R1 a microsomal vitamin D 25-hydroxylase. J Biol Chem. 2003;278(39):38084-93. [DOI:10.1074/jbc.M307028200] [PMID] []
2. Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol. 2013;5(1):51-108. [DOI:10.4161/derm.24494] [PMID] []
3. Chun RF, Nielson CM. Free Vitamin D: Concepts, Assays, Outcomes, and Prospects. In: Vitamin D. Elsevier; 2018:925-37. [DOI:10.1016/B978-0-12-809965-0.00051-3]
4. Larner DP, Adams JS, Hewison M. Regulation of Renal and Extrarenal 1α-Hydroxylase. In: Vitamin D. Elsevier; 2018:117-37. [DOI:10.1016/B978-0-12-809965-0.00008-2] [PMID] []
5. Speeckaert M, Huang G, Delanghe JR, Taes YE. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta. 2006;372(1-2):33-42. [DOI:10.1016/j.cca.2006.03.011] [PMID]
6. Bikle DD, Siiteri PK, Ryzen E, Haddad JG, Gee E. Serum protein binding of 1, 25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab. 1985;61(5):969-75. [DOI:10.1210/jcem-61-5-969] [PMID]
7. Anetakis C, Mitka S, Chatzidimitriou M, Anagnostopoulos K, Eleftheriou P, Lialiaris T. Vitamin D Status in Osteoporotic and Diabetic Patients and Athletic Healthy Individuals from Northern Greece. Rep Biochem Mol Biol. 2023;11(4):565-76. [DOI:10.52547/rbmb.11.4.565] [PMID] []
8. Alzaman NS, Dawson-Hughes B, Nelson J, D'Alessio D, Pittas AG. Vitamin D status of black and white Americans and changes in vitamin D metabolites after varied doses of vitamin D supplementation. Am J Clin Nutr. 2016;104(1):205-14. [DOI:10.3945/ajcn.115.129478] [PMID] []
9. Nielson CM, Jones KS, Chun RF, Jacobs JM, Wang Y, Hewison M, et al. Free 25-hydroxyvitamin D: impact of vitamin D binding protein assays on racial-genotypic associations. J Clin Endocrinol Metab. 2016;101(5):2226-34. [DOI:10.1210/jc.2016-1104] [PMID] []
10. Virágh É, Horváth D, LHocsei Z, Kovács L, Jáger R, Varga B, et al. Vitamin D supply among healthy blood donors in County Vas, Hungary. Orv Hetil. 2012;153(41):1629-37. [DOI:10.1556/OH.2012.29459] [PMID]
11. Vásárhelyi B, Sátori A, Olajos F, Szabó A, Beko G. Low vitamin D levels among patients at Semmelweis University: retrospective analysis during a one-year period. Orv Hetil. 2011;152(32):1272-7. [DOI:10.1556/OH.2011.29187] [PMID]
12. Jemielita TO, Leonard MB, Baker J, Sayed S, Zemel BS, Shults J, et al. Association of 25-hydroxyvitamin D with areal and volumetric measures of bone mineral density and parathyroid hormone: impact of vitamin D-binding protein and its assays. Osteoporos Int. 2016;27(2):617-26. [DOI:10.1007/s00198-015-3296-6] [PMID] []
13. Ying HQ, Sun HL, He BS, Pan YQ, Wang F, Deng QW, et al. Circulating vitamin D binding protein, total, free and bioavailable 25-hydroxyvitamin D and risk of colorectal cancer. Sci Rep. 2015;5:7956. [DOI:10.1038/srep07956] [PMID] []
14. Weinstein SJ, Purdue MP, Smith-Warner SA, Mondul AM, Black A, Ahn J, et al. Serum 25-hydroxyvitamin D, vitamin D binding protein and risk of colorectal cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Int J Cancer. 2015;136(6):E654-64. [DOI:10.1002/ijc.29157] [PMID] []
15. Song M, Konijeti GG, Yuan C, Ananthakrishnan AN, Ogino S, Fuchs CS, et al. Plasma 25-hydroxyvitamin D, vitamin D binding protein, and risk of colorectal cancer in the Nurses' Health Study. Cancer Prev Res (Phila). 2016;9(8):664-72. [DOI:10.1158/1940-6207.CAPR-16-0053] [PMID] []
16. Srikanth P, Chun RF, Hewison M, Adams JS, Bouillon R, Vanderschueren D, et al. Associations of total and free 25OHD and 1, 25 (OH) 2 D with serum markers of inflammation in older men. Osteoporos Int. 2016;27(7):2291-300. [DOI:10.1007/s00198-016-3537-3] [PMID] []
17. Behrens JR, Rasche L, Gieß RM, Pfuhl C, Wakonig K, Freitag E, et al. Low 25-hydroxyvitamin D, but not the bioavailable fraction of 25-hydroxyvitamin D, is a risk factor for multiple sclerosis. Eur J Neurol. 2016;23(1):62-7. [DOI:10.1111/ene.12788] [PMID]
18. Kruse K. Pathophysiology of calcium metabolism in children with vitamin D-deficiency rickets. J Pediatr. 1995;126(5):736-41. [DOI:10.1016/S0022-3476(95)70401-9] [PMID]
19. Markestad T, Halvorsen S, Halvorsen KS, Aksnes L, Aarskog D. Plasma concentrations of vitamin D metabolites before and during treatment of vitamin D deficiency rickets in children. Acta Pa Ediatrica. 1984;73(2):225-31. [DOI:10.1111/j.1651-2227.1984.tb09933.x] [PMID]
20. Singhellakis PN, Malandrinou FC, Psarrou CJ, Danelli AM, Tsalavoutas SD, Constandellou ES. Vitamin D deficiency in white, apparently healthy, free-living adults in a temperate region. Hormones. 2011;10(2):131-43. [DOI:10.14310/horm.2002.1303] [PMID]
21. Need AG, O'Loughlin PD, Morris HA, Coates PS, Horowitz M, Nordin BC. Vitamin D metabolites and calcium absorption in severe vitamin D deficiency. J Bone Miner Res. 2008;23(11):1859-63. [DOI:10.1359/jbmr.080607] [PMID]
22. Jones G, Prosser DE, Kaufmann M. The Activating Enzymes of Vitamin D Metabolism (25- and 1α-Hydroxylases). In: Vitamin D. Elsevier; 2018: 57-79. [DOI:10.1016/B978-0-12-809965-0.00005-7]
23. Li H, Stampfer MJ, Hollis JBW, Mucci LA, Gaziano JM, Hunter D, et al. A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med. 2007;4(3):e103. [DOI:10.1371/journal.pmed.0040103] [PMID] []
24. Blanton D, Han Z, Bierschenk L, Linga-Reddy MP, Wang H, Clare-Salzler M, et al. Reduced serum vitamin D-binding protein levels are associated with Type 1 diabetes. Diabetes. 2011;60(10):2566-70. [DOI:10.2337/db11-0576] [PMID] []
25. Bolland MJ, Grey AB, Ames RW, Horne AM, Mason BH, Wattie DJ, et al. Age-, gender-, and weight-related effects on levels of 25-hydroxyvitamin D are not mediated by vitamin D binding protein. Clin Endocrinol (Oxf). 2007;67(2):259-64. [DOI:10.1111/j.1365-2265.2007.02873.x] [PMID]
26. Batmaz SB, Arıkoğlu T, Tamer L, Eskandari G, Kuyucu S. Seasonal variation of asthma control, lung function tests and allergic inflammation in relation to vitamin D levels: a prospective annual study. Adv Dermatol Allergol Dermatol Alergol. 2018;35(1):99. [DOI:10.5114/ada.2017.71421] [PMID] []
27. Lauridsen AL, Vestergaard P, Hermann AP, Brot C, Heickendorff L, Mosekilde L, et al. Plasma concentrations of 25-hydroxy-vitamin D and 1, 25-dihydroxy-vitamin D are related to the phenotype of Gc (vitamin D-binding protein): a cross-sectional study on 595 early postmenopausal women. Calcif Tissue Int. 2005;77(1):15-22. [DOI:10.1007/s00223-004-0227-5] [PMID]
28. Abdulmahdi Mokif T, Mahdi AA, Tuama Obayes Al-Mammori R, Oleiwi Muttaleb Al-Dahmoshi H, Kadhim Al-Khafaji NS. Correlation of Vitamin D3, PAI-1, and HCG Hormone in Pre-and Post-Menopausal in Babylon Province. Rep Biochem Mol Biol. 11(1):36-43. [DOI:10.52547/rbmb.11.1.36] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb