Volume 12, Issue 4 (Vol.12 No.4 Jan 2024)                   rbmb.net 2024, 12(4): 596-608 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tofigh P, Mirghazanfari S M, Hami Z, Nassireslami E, Ebrahimi M. The Investigation of Quercus Infectoria Gall Aqueous Extract Effect on the Cell Proliferation, Apoptosis and Expression of CCND1, TP53, BCL2 and BAX Genes in Cell Line of Lung, Gastric and Esophageal Cancers. rbmb.net 2024; 12 (4) :596-608
URL: http://rbmb.net/article-1-1256-en.html
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
Abstract:   (556 Views)
Background: The therapeutic potential of Quercus infectoria (QI) gall, including its anti-inflammatory, antioxidant, and anticancer properties, is well-known. However, its impact on lung, gastric, and esophageal cancer cells remain unclear. This study aims to explore the effects of QI gall aqueous extract on cell viability, apoptosis, and gene expression in A549, BGC823, and KYSE-30 cell lines.

Methods: A549, BGC823, and KYSE-30 cells were seeded in complete medium and incubated with different concentrations of QI gall extract for 24 hours. Cell viability was measured by an MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The induction of apoptosis was assessed through flow cytometric analysis after the adding FITC-conjugated Annexin V (Annexin V-FITC) and propidium iodide (PI). The mRNA expression levels of CCND1, TP53, BCL2, and BAX genes were determined using Real-time Quantitative Polymerase Chain Reaction analysis.

Results: The MTT assay demonstrated that treatment with QI gall extract significantly reduced the number of viable cells in the A549, BGC823, and KYSE-30 cell lines at IC50 concentrations of 440.1, 437.1, and 465.2 mg/ml, respectively. Additionally, compared to untreated cell population, the percentages of early apoptosis, late apoptosis, and necrosis in the A549, BGC823, and KYSE-30 cells significantly increased following treatment with QI gall extract (P< 0.05). Also, the treatment with QI gall extract influenced the expression of CCND1, TP53, BCL2, and BAX genes.

Conclusions: The present findings indicated that the gall extract of QI can inhibit the growth of A549, BGC823, and KYSE-30 cells by inducing apoptosis, which may be mediated via mitochondria‑dependent pathway.


Full-Text [PDF 448 kb]   (128 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/09/23 | Accepted: 2024/06/9 | Published: 2024/07/2

References
1. Elham A, Arken M, Kalimanjan G, Arkin A, Iminjan M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus Infectoria galls. J Ethnopharmacol. 2021;273:113592. [DOI:10.1016/j.jep.2020.113592] [PMID]
2. Kaur G, Athar M, Alam MS. Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages. Chem Biol Interact. 2008;171(3):272-82. [DOI:10.1016/j.cbi.2007.10.002] [PMID]
3. Vermani A; Navneet; Prabhat. Screening of Quercus infectoria gall extracts as anti-bacterial agents against dental pathogens. Indian J Dent Res. 2009;20(3):337-9. [DOI:10.4103/0970-9290.57380] [PMID]
4. Nair M, Sandhu SS, Sharma AK. Cancer molecular markers: A guide to cancer detection and management. Semin Cancer Biol. 2018;52(Pt 1):39-55. [DOI:10.1016/j.semcancer.2018.02.002] [PMID]
5. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328-37. [DOI:10.1038/nature12624] [PMID] []
6. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108(3):479-85. [DOI:10.1038/bjc.2012.581] [PMID] []
7. Dunn BK, Wagner PD, Anderson D, Greenwald P. Molecular markers for early detection. Semin Oncol. 2010;37(3):224-42. [DOI:10.1053/j.seminoncol.2010.05.007] [PMID]
8. Heist RS, Sequist LV, Engelman JA. Genetic changes in squamous cell lung cancer: a review. J Thorac Oncol. 2012;7(5):924-33. [DOI:10.1097/JTO.0b013e31824cc334] [PMID] []
9. Shivapurkar N, Reddy J, Chaudhary PM, Gazdar AF. Apoptosis and lung cancer: a review. J Cell Biochem. 2003;88(5):885-98. [DOI:10.1002/jcb.10440] [PMID]
10. Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, et al. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int J Mol Sci. 2017;18(2):367. [DOI:10.3390/ijms18020367] [PMID] []
11. Sekido Y, Fong KM, Minna JD. Molecular genetics of lung cancer. Annu Rev Med. 2003;54:73-87. [DOI:10.1146/annurev.med.54.101601.152202] [PMID]
12. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90. [DOI:10.3322/caac.20107] [PMID]
13. Lv L, Liang X, Wu D, Wang F, Zhang Y, Cang H, et al. Is cardia cancer a special type of gastric cancer? A differential analysis of early cardia cancer and non-cardia cancer. J Cancer. 2021;12(8):2385-2394. [DOI:10.7150/jca.51433] [PMID] []
14. Ilic M, Ilic I. Epidemiology of stomach cancer. World J Gastroenterol. 2022;28(12):1187-1203. [DOI:10.3748/wjg.v28.i12.1187] [PMID] []
15. Haghighat P, Bekaii-Saab T. An update on biochemotherapy of advanced gastric and gastroesophageal adenocarcinoma. J Natl Compr Canc Netw. 2008;6(9):895-900. [DOI:10.6004/jnccn.2008.0068] [PMID]
16. Dang Y, Liu T, Yan J, Reinhardt JD, Yin C, Ye F, Zhang G. Gastric cancer proliferation and invasion is reduced by macrocalyxin C via activation of the miR-212-3p/Sox6 Pathway. Cell Signal. 2020;66:109430. [DOI:10.1016/j.cellsig.2019.109430] [PMID]
17. Yang CS, Chen X, Tu S. Etiology and Prevention of Esophageal Cancer. Gastrointest Tumors. 2016;3(1):3-16. [DOI:10.1159/000443155] [PMID] []
18. Kuwano H, Kato H, Miyazaki T, Fukuchi M, Masuda N, Nakajima M, et al. Genetic alterations in esophageal cancer. Surg Today. 2005;35(1):7-18. [DOI:10.1007/s00595-004-2885-3] [PMID]
19. Lao-Sirieix P, Caldas C, Fitzgerald RC. Genetic predisposition to gastro-oesophageal cancer. Curr Opin Genet Dev. 2010;20(3):210-7. [DOI:10.1016/j.gde.2010.03.002] [PMID]
20. Melhado RE, Alderson D, Tucker O. The changing face of esophageal cancer. Cancers (Basel). 2010;2(3):1379-404. [DOI:10.3390/cancers2031379] [PMID] []
21. Islami F, Kamangar F, Aghcheli K, Fahimi S, Semnani S, et al. Epidemiologic features of upper gastrointestinal tract cancers in Northeastern Iran. Br J Cancer. 2004;90(7):1402-6. [DOI:10.1038/sj.bjc.6601737] [PMID] []
22. Huang FL, Yu SJ. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J Surg. 2018;41(3):210-215. [DOI:10.1016/j.asjsur.2016.10.005] [PMID]
23. Holm K, Staaf J, Jönsson G, Vallon-Christersson J, Gunnarsson H, Arason A, et al. Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours. Breast Cancer Res Treat. 2012;133(2):583-94. [DOI:10.1007/s10549-011-1817-3] [PMID]
24. Pestell RG. New roles of cyclin D1. Am J Pathol. 2013;183(1):3-9. [DOI:10.1016/j.ajpath.2013.03.001] [PMID] []
25. Ara N, Atique M, Ahmed S, Ali Bukhari SG. Frequency of p53 gene mutation and protein expression in oral squamous cell carcinoma. J Coll Physicians Surg Pak. 2014;24(10):749-53.
26. Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW. Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer. 2006;6:213. [DOI:10.1186/1471-2407-6-213] [PMID] []
27. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74(4):609-19. [DOI:10.1016/0092-8674(93)90509-O] [PMID]
28. Ziegler U, Groscurth P. Morphological features of cell death. News Physiol Sci. 2004;19:124-8. [DOI:10.1152/nips.01519.2004] [PMID]
29. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8(4):603-19. [DOI:10.18632/aging.100934] [PMID] []
30. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57. [DOI:10.1038/bjc.1972.33] [PMID] []
31. Ngabire D, Seong YA, Patil MP, Niyonizigiye I, Seo YB, Kim GD. Induction of apoptosis and G1 phase cell cycle arrest by Aster incisus in AGS gastric adenocarcinoma cells. Int J Oncol. 2018;53(5):2300-2308. [DOI:10.3892/ijo.2018.4547] [PMID]
32. Sayed Mahdi N, Azarbani F, Pirnia A, Abbaszadeh A, Gholami M. The Effect of Caffeic Acid on Spermatogonial Stem Cell-type A Cryopreservation. Rep Biochem Mol Biol. 2018;7(1):85-93.
33. Mohammadi A, Balizadeh Karami AR, Dehghan Mashtani V, Sahraei T, Bandani Tarashoki Z, Khattavian E, et al. Evaluation of Oxidative Stress, Apoptosis, and Expression of MicroRNA-208a and MicroRNA-1 in Cardiovascular Patients. Rep Biochem Mol Biol. 2021;10(2):183-196. [DOI:10.52547/rbmb.10.2.183] [PMID] []
34. Yusof WNSW, Abdullah H. Phytochemicals and Cytotoxicity of Quercus infectoria Ethyl Acetate Extracts on Human Cancer Cells. Trop Life Sci Res. 2020;31(1):69-84. [DOI:10.21315/tlsr2020.31.1.5] [PMID] []
35. Ludwig LM, Maxcy KL, LaBelle JL. Flow Cytometry-Based Detection and Analysis of BCL-2 Family Proteins and Mitochondrial Outer Membrane Permeabilization (MOMP). Methods Mol Biol. 2019;1877:77-91. [DOI:10.1007/978-1-4939-8861-7_5] [PMID] []
36. Abdullah H, Ismail I, Suppian R. Induction of apoptosis in HeLa cervical cancer cells treated with aqueous and supercritical fluid extracts of Quercus infectoria. Res J Pharmacogn. 2021;8(4):63-77.
37. Wyllie AH. Apoptosis: an overview. Br Med Bull. 1997;53(3):451-65. [DOI:10.1093/oxfordjournals.bmb.a011623] [PMID]
38. Shen Y, Luo Q, Xu H, Gong F, Zhou X, Sun Y, et al. Mitochondria-dependent apoptosis of activated T lymphocytes induced by astin C, a plant cyclopeptide, for preventing murine experimental colitis. Biochem Pharmacol. 2011;82(3):260-8. [DOI:10.1016/j.bcp.2011.04.013] [PMID]
39. Mohan S, Abdelwahab SI, Kamalidehghan B, Syam S, May KS, Harmal NS, et al. Involvement of NF-κB and Bcl2/Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A. Phytomedicine. 2012;19(11):1007-15. [DOI:10.1016/j.phymed.2012.05.012] [PMID]
40. Lindsten T, Zong WX, Thompson CB. Defining the role of the Bcl-2 family of proteins in the nervous system. Neuroscientist. 2005;11(1):10-5. [DOI:10.1177/1073858404269267] [PMID]
41. Bivik CA, Larsson PK, Kågedal KM, Rosdahl IK, Ollinger KM. UVA/B-induced apoptosis in human melanocytes involves translocation of cathepsins and Bcl-2 family members. J Invest Dermatol. 2006;126(5):1119-27. [DOI:10.1038/sj.jid.5700124] [PMID]
42. Green DR. At the gates of death. Cancer cell. 2006;9(5):328-30. [DOI:10.1016/j.ccr.2006.05.004] [PMID]
43. Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993;7(3):331-42. [DOI:10.1101/gad.7.3.331] [PMID]
44. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81(3):323-30. [DOI:10.1016/0092-8674(95)90385-2] [PMID]
45. Paggi MG, Baldi A, Bonetto F, Giordano A. Retinoblastoma protein family in cell cycle and cancer: a review. J Cell Biochem. 1996;62(3):418-30. https://doi.org/10.1002/(SICI)1097-4644(199609)62:3<418::AID-JCB12>3.0.CO;2-E [DOI:10.1002/(SICI)1097-4644(199609)62:33.0.CO;2-E]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb