Volume 12, Issue 4 (Vol.12 No.4 Jan 2024)                   rbmb.net 2024, 12(4): 643-651 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kheirjou S, Hosseini F, Masjedian Jaz F, Siasi Torbati E. Employment of Spore-Forming Probiotics to Combat Persister Cells of Staphylococcus Epidermidis. rbmb.net 2024; 12 (4) :643-651
URL: http://rbmb.net/article-1-1267-en.html
Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
Abstract:   (556 Views)
Background: In this study, spore-forming probiotics were employed to eradicate Staphylococcus epidermidis biofilms and the presence and expression of genes involved in stress response was examined.

Methods: Polymerase chain reaction (PCR) assay was used to detect rpoS, relA and mazF genes in S. epidermidis ATCC 12228. Biofilm production was investigated by microtiter plate (MTP) assay. 100X minimum inhibitory concentration (MIC) of gentamycin was used to induce persister cells in planktonic and biofilm bacterial cells. The expression of rpoS, relA, and mazF genes was assessed at different time intervals of 2, 8, and 24 h using real-time PCR assay. Then, dilutions of 1, 0.5, and 0.25 µg/ml of the supernatant of Bacillus coagulans culture was used to eradicate the persister cells and the number of colonies was determined.

Results: Persister cells of S. epidermidis were formed after 7 h in planktonic and 5 h in the biofilm structure after exposure to 50 µg/ml of gentamycin. The expression of mazF and rpoS in biofilm structure and the expression of rpoS and relA in persister cells were significantly higher compared to the control (p< 0.05). The number of persister cells showed a reduction of log 2.4 and log 0.8 after exposure to 1 and 0.5 µg/ml B. coagulans supernatant, respectively, but no reduction was observed at the concentration of 0.25 µg/ml.

Conclusions: The results showed that the supernatant of probiotics containing their secretive metabolites can be used as a novel approach to combat persister cells.
Full-Text [PDF 298 kb]   (111 Downloads)    
Type of Article: Original Article | Subject: Microbiology
Received: 2023/10/11 | Accepted: 2024/04/30 | Published: 2024/07/2

References
1. Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M, O'Mahony L, Richards RG, Moriarty TF. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front Microbiol. 2017;8:1401. [DOI:10.3389/fmicb.2017.01401] [PMID] []
2. Behshood P, Tajbakhsh E, Momtaz H. Recognition of (Sesc) for Easy Identification of Staphylococcus Epidermidis and Molecular and Phenotypic Study of Β-Lactam Resistance in Staphylococcus Epidermidis Isolates in Isfahan. Rep Biochem Mol Biol. 2020;9(3):309-314. [DOI:10.29252/rbmb.9.3.309] [PMID] []
3. Mack D. Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J Hosp Infect. 1999 Dec;43 Suppl:S113-25. [DOI:10.1016/S0195-6701(99)90074-9] [PMID]
4. Rajabi S, Shivaee A, Khosravi MA, Eshaghi M, Shahbazi S, Hosseini F. Evaluation of multidrug efflux pump expression in clinical isolates of Staphylococcus. aureus. Gene Rep. 2020;18:100537. [DOI:10.1016/j.genrep.2019.100537]
5. Taati Moghadam M, Mirzaei M, Fazel Tehrani Moghaddam M, Babakhani S, Yeganeh O, et al. The Challenge of Global Emergence of Novel Colistin-Resistant Escherichia coli ST131. Microb Drug Resist. 2021;27(11):1513-1524. [DOI:10.1089/mdr.2020.0505] [PMID]
6. Shivaee A, Mirshekar M, Mohammadzadeh R, Shahbazi S. Association between ESBLs genes and quinolone resistance in uropathogenic Escherichia coli isolated from patients with urinary tract infection. Infect Epidemiol Microbiol. 2019;5(1):15-23.
7. Büttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol. 2015;5:14. [DOI:10.3389/fcimb.2015.00014] [PMID] []
8. Shahkolahi S, Shakibnia P, Shahbazi S, Sabzi S, Badmasti F, Asadi Karam MR, Habibi M. Detection of ESBL and AmpC producing Klebsiella pneumoniae ST11 and ST147 from urinary tract infections in Iran. Acta Microbiol Immunol Hung. 2022;69(4):303-313. [DOI:10.1556/030.2022.01808] [PMID]
9. Conlon BP, Rowe SE, Lewis K. Persister cells in biofilm associated infections. Adv Exp Med Biol. 2015;831:1-9. [DOI:10.1007/978-3-319-09782-4_1] [PMID]
10. Wilmaerts D, Windels EM, Verstraeten N, Michiels J. General Mechanisms Leading to Persister Formation and Awakening. Trends Genet. 2019;35(6):401-411. [DOI:10.1016/j.tig.2019.03.007] [PMID]
11. Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell. 2014;157(3):539-48. [DOI:10.1016/j.cell.2014.02.050] [PMID]
12. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5(1):48-56. [DOI:10.1038/nrmicro1557] [PMID]
13. Wen Y, Behiels E, Devreese B. Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis. 2014;70(3):240-9. [DOI:10.1111/2049-632X.12145] [PMID]
14. Shahbazi S, Shivaee A, Nasiri M, Mirshekar M, Sabzi S, Sariani OK. Zinc oxide nanoparticles impact the expression of the genes involved in toxin-antitoxin systems in multidrug-resistant Acinetobacter baumannii. J Basic Microbiol. 2023;63(9):1007-1015. [DOI:10.1002/jobm.202200382] [PMID]
15. Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev. 2016;40(5):592-609. [DOI:10.1093/femsre/fuw022] [PMID]
16. Engelberg-Kulka H, Hazan R, Amitai S. mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci. 2005;118(Pt 19):4327-32. [DOI:10.1242/jcs.02619] [PMID]
17. Elisashvili V, Kachlishvili E, Chikindas ML. Recent Advances in the Physiology of Spore Formation for Bacillus Probiotic Production. Probiotics Antimicrob Proteins. 2019;11(3):731-747. [DOI:10.1007/s12602-018-9492-x] [PMID]
18. Mingmongkolchai S, Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol. 2018;124(6):1334-1346. [DOI:10.1111/jam.13690] [PMID]
19. Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel). 2023;12(6):1044. [DOI:10.3390/antibiotics12061044] [PMID] []
20. Liu S, Brul S, Zaat SAJ. Bacterial Persister-Cells and Spores in the Food Chain: Their Potential Inactivation by Antimicrobial Peptides (AMPs). Int J Mol Sci. 2020;21(23):8967. [DOI:10.3390/ijms21238967] [PMID] []
21. Rueda-Robles A, Rodríguez-Lara A, Meyers MS, Sáez-Lara MJ, Álvarez-Mercado AI. Effect of Probiotics on Host-Microbiota in Bacterial Infections. Pathogens. 2022;11(9):986. [DOI:10.3390/pathogens11090986] [PMID] []
22. Mazur P, Skiba-Kurek I, Mrowiec P, Karczewska E, Drożdż R. Synergistic ROS-Associated Antimicrobial Activity of Silver Nanoparticles and Gentamicin Against Staphylococcus epidermidis. Int J Nanomedicine. 2020;15:3551-3562. [DOI:10.2147/IJN.S246484] [PMID] []
23. Kshetry AO, Pant ND, Bhandari R, Khatri S, Shrestha KL, Upadhaya SK, et al. Minimum inhibitory concentration of vancomycin to methicillin resistant Staphylococcus aureus isolated from different clinical samples at a tertiary care hospital in Nepal. Antimicrob Resist Infect Control. 2016;5:27. [DOI:10.1186/s13756-016-0126-3] [PMID] []
24. Shivaee A, Mohammadzadeh R, Shahbazi S, Pardakhtchi E, Ohadi E, Kalani BS. Time-variable expression levels of mazF, atlE, sdrH, and bap genes during biofilm formation in Staphylococcus epidermidis. Acta Microbiol Immunol Hung. 2019;66(4):499-508. [DOI:10.1556/030.66.2019.019] [PMID]
25. Kato F, Yabuno Y, Yamaguchi Y, Sugai M, Inouye M. Deletion of mazF increases Staphylococcus aureus biofilm formation in an ica-dependent manner. Pathog Dis. 2017;75(5). [DOI:10.1093/femspd/ftx026] [PMID]
26. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H. A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science. 2007;318(5850):652-5. [DOI:10.1126/science.1147248] [PMID]
27. Wang X, Kim Y, Hong SH, Ma Q, Brown BL, Pu M, et al. Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol. 2011;7(6):359-66. [DOI:10.1038/nchembio.560] [PMID] []
28. Kumar S, Devi S, Sood SK, Kapila S, Narayan KS, Shandilya S. Antibiotic resistance and virulence genes in nisin-resistant Enterococcus faecalis isolated from raw buffalo milk modulate the innate functions of rat macrophages. J Appl Microbiol. 2019;127(3):897-910. [DOI:10.1111/jam.14343] [PMID]
29. Narimisa N, Sadeghi Kalani B, Mohammadzadeh R, Masjedian Jazi F. Combination of Antibiotics-Nisin Reduces the Formation of Persister Cell in Listeria monocytogenes. Microb Drug Resist. 2021;27(2):137-144. [DOI:10.1089/mdr.2020.0019] [PMID]
30. Kondrotiene K, Kasnauskyte N, Serniene L, Gölz G, Alter T, Kaskoniene V, et al. Characterization and application of newly isolated nisin producing Lactococcus lactis strains for control of Listeria monocytogenes growth in fresh cheese. LWT-Food science and technology. Amsterdam. 2018;87:507-14. [DOI:10.1016/j.lwt.2017.09.021]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb