Volume 12, Issue 4 (Vol.12 No.4 Jan 2024)                   rbmb.net 2024, 12(4): 530-539 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassan Al-Saeedi R, Khalaj-Kondori M, Hosseinpour Feizi M A, Hajavi J. DOX-PLGA Nanoparticles Effectively Suppressed the Expression of Pro-Inflammatory Cytokines TNF-a, IL-6, iNOS, and IL-1β in MCF-7 Breast Cancer Cell Line. rbmb.net 2024; 12 (4) :530-539
URL: http://rbmb.net/article-1-1303-en.html
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Abstract:   (431 Views)
Background: Inflammation contributes to cancer pathobiology through different mechanisms. Higher levels of pro-inflammatory cytokines can lead to hyperinflammation and promote cancer development and metastasis. For cancer treatment, Doxorubicin (DOX) can be encapsulated into the poly-lactic-glycolic acid (PLGA) nanoparticles. This study aimed to investigate the impact of doxorubicin-loaded PLGA nanoparticles (DOX-PLGA NP) on the expression of pro-inflammatory genes TNF-α, IL-6, iNOS, and IL-1β in the MCF-7 cells.

Methods: The DOX-PLGA NP was prepared by loading doxorubicin into PLGA and characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM). The cytotoxic effect of the nanoparticles was determined by the MTT assay, and their impacts on the expression of pro-inflammatory genes were assessed by qRT-PCR.

Results: The encapsulation efficiency and loading capacity were 60±1.5 and 1.13±0.21 percent, respectively. The zeta potential and mean DOX-PLGA nanoparticle size were -18±0.550 mV and 172±55.6 nm, respectively. The 50% inhibitory concentration (IC50) of the DOX-PLGA NP on MCF-7 cell viability was 24.55 µg/mL after 72 hours of treatment. The qRT-PCR results revealed that the 20 µg/mL concentration of the DOX-PLGA NP significantly suppressed the expression of the pro-inflammatory genes TNF-α, IL-6, iNOS, and IL-1β compared to DOX alone (20 µg/mL). Additionally, the suppression effect of DOX-PLGA NP on the expression of these pro-inflammatory genes was dose-dependent.

Conclusion: These results show that DOX-PLGA NP efficiently suppressed the expression of pro-inflammatory genes. Furthermore, encapsulation of DOX into PLGA nanoparticles significantly improved the effectiveness of DOX in suppressing pro-inflammatory genes in MCF-7 breast cancer cells.

Full-Text [PDF 343 kb]   (112 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2023/12/10 | Accepted: 2024/01/14 | Published: 2024/07/2

References
1. Nagarajan D, McArdle SE. Immune landscape of breast cancers. Biomedicines. 2018;6(1):20. [DOI:10.3390/biomedicines6010020] [PMID] []
2. Karimpur Zahmatkesh A, Khalaj-Kondori M, Hosseinpour Feizi MA, Baradaran B. GLUL gene knockdown and restricted glucose level show synergistic inhibitory effect on the luminal subtype breast cancer MCF7 cells' proliferation and metastasis. EXCLI J. 2023;22:847-861.
3. Hagag S, Kodous A, Shaaban HA. Molecular and Immunohistochemical Alterations in Breast Cancer Patients in Upper Egypt. Rep Biochem Mol Biol. 2023;11(4):532-546. [DOI:10.52547/rbmb.11.4.532] [PMID] []
4. World Health Organization. The Global Breast Cancer Initiative. 3 February 2023. https://www.who.int/initiatives/global-breast-cancer-initiative.
5. Budny A, Starosławska E, Budny B. Epidemiologia oraz diagnostyka raka piersi. Pol Merkuriusz Lek. 2019;46(275):195-204.
6. Tarighi M, Khalaj-Kondori M, Hosseinzadeh A, Abtin M. Long non-coding RNA (lncRNA) DSCAM-AS1 is upregulated in breast cancer. Breast Dis. 2021;40(2):63-8. [DOI:10.3233/BD-201010] [PMID]
7. King TC. Chapter 2, Inflammation, inflammatory mediators, and immune-mediated disease in: . Elsevier's Integrated Pathology. 2007. [DOI:10.1016/B978-0-323-04328-1.50008-5]
8. Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012;22(1):33-40. [DOI:10.1016/j.semcancer.2011.12.005] [PMID]
9. Tahmasebi S, Alimohammadi M, Khorasani S, Rezaei N. Pro-tumorigenic and Anti-tumorigenic Roles of Pro-inflammatory Cytokines in Cancer. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. 2023. [DOI:10.1007/978-3-030-80962-1_25-1]
10. Salem ML, Attia ZI, Galal SM. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model. J Adv Res. 2016;7(2):243-53. [DOI:10.1016/j.jare.2015.06.001] [PMID] []
11. Ahangar NK, Hemmat N, Khalaj-Kondori M, Shadbad MA, Sabaie H, Mokhtarzadeh A, Alizadeh N, et al. The Regulatory Cross-Talk between microRNAs and Novel Members of the B7 Family in Human Diseases: A Scoping Review. Int J Mol Sci. 2021;22(5):2652. [DOI:10.3390/ijms22052652] [PMID] []
12. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27-41. [DOI:10.1016/j.immuni.2019.06.025] [PMID] []
13. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 2011;7(5):651-8. [DOI:10.7150/ijbs.7.651] [PMID] []
14. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798-809. [DOI:10.1038/nrc2734] [PMID] []
15. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441(7092):431-6. [DOI:10.1038/nature04870] [PMID]
16. Xue Q, Yan Y, Zhang R, Xiong H. Regulation of iNOS on Immune Cells and Its Role in Diseases. Int J Mol Sci. 2018;19(12):3805. [DOI:10.3390/ijms19123805] [PMID] []
17. Fisusi FA, Akala EO. Drug Combinations in Breast Cancer Therapy. Pharm Nanotechnol. 2019;7(1):3-23. [DOI:10.2174/2211738507666190122111224] [PMID] []
18. Rahmati-Yamchi M, Zarghami N, Nozad Charoudeh H, Ahmadi Y, Baradaran B, Khalaj-Kondori M, et al. Clofarabine Has Apoptotic Effect on T47D Breast Cancer Cell Line via P53R2 Gene Expression. Adv Pharm Bull. 2015;5(4):471-6. [DOI:10.15171/apb.2015.064] [PMID] []
19. Zahedian S, Hekmat A, Tackallou SH, Ghoranneviss M. The Impacts of Prepared Plasma-Activated Medium (PAM) Combined with Doxorubicin on the Viability of MCF-7 Breast Cancer Cells: A New Cancer Treatment Strategy. Rep Biochem Mol Biol. 2022;10(4):640-652. [DOI:10.52547/rbmb.10.4.640] [PMID] []
20. Greco G, Ulfo L, Turrini E, Marconi A, Costantini PE, Marforio TD, et al. Light-Enhanced Cytotoxicity of Doxorubicin by Photoactivation. Cells. 2023;12(3):392. [DOI:10.3390/cells12030392] [PMID] []
21. Kalyanaraman B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol. 2020;29:101394. [DOI:10.1016/j.redox.2019.101394] [PMID] []
22. Ahangar NK, Khalaj-Kondori M, Alizadeh N, Mokhtarzadeh A, Baghbanzadeh A, Shadbad MA, Dolatkhah K, Baradaran B. Silencing tumor-intrinsic HHLA2 potentiates the anti-tumoral effect of paclitaxel on MG63 cells: Another side of immune checkpoint. Gene. 2023;855:147086. [DOI:10.1016/j.gene.2022.147086] [PMID]
23. Riazi-Tabrizi N, Khalaj-Kondori M, Safaei S, Amini M, Hassanian H, Maghsoudi M, et al. NRF2 Suppression Enhances the Susceptibility of Pancreatic Cancer Cells, Miapaca-2 to Paclitaxel. Mol Biotechnol. 2023. https://doi.org/10.1007/s12033-023-00872-2 [DOI:10.1007/s12033-023-00872-2.] [PMID]
24. Elmowafy EM, Tiboni M, Soliman ME. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig. 2019;49:347-80. [DOI:10.1007/s40005-019-00439-x]
25. Blasi P. Poly (lactic acid)/poly (lactic-co-glycolic acid)-based microparticles: An overview. J Pharm Investig. 2019;49:337-46. https://doi.org/10.1007/s40005-019-00457-9 [DOI:10.1007/s40005-019-00453-z]
26. Hajavi J, Ebrahimian M, Sankian M, Khakzad MR, Hashemi M. Optimization of PLGA formulation containing protein or peptide-based antigen: Recent advances. J Biomed Mater Res A. 2018;106(9):2540-2551. [DOI:10.1002/jbm.a.36423] [PMID]
27. Kim J, Choi Y, Yang S, Lee J, Choi J, Moon Y, et al. Sustained and Long-Term Release of Doxorubicin from PLGA Nanoparticles for Eliciting Anti-Tumor Immune Responses. Pharmaceutics. 2022;14(3):474. [DOI:10.3390/pharmaceutics14030474] [PMID] []
28. Panda PK, Jain SK. Doxorubicin bearing peptide anchored PEGylated PLGA nanoparticles for the effective delivery to prostate cancer cells. J Drug Deliv Sci Tech. 2023:86 (104667). [DOI:10.1016/j.jddst.2023.104667]
29. Siddharth S, Nayak A, Nayak D, Bindhani BK, Kundu CN. Chitosan-Dextran sulfate coated doxorubicin loaded PLGA-PVA-nanoparticles caused apoptosis in doxorubicin resistance breast cancer cells through induction of DNA damage. Sci Rep. 2017;7(1):2143. [DOI:10.1038/s41598-017-02134-z] [PMID] []
30. Gelfo V, Romaniello D, Mazzeschi M, Sgarzi M, Grilli G, Morselli A, et al. Roles of IL-1 in Cancer: From Tumor Progression to Resistance to Targeted Therapies. Int J Mol Sci. 2020;21(17):6009. [DOI:10.3390/ijms21176009] [PMID] []
31. Bent R, Moll L, Grabbe S, Bros M. Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci. 2018;19(8):2155. [DOI:10.3390/ijms19082155] [PMID] []
32. Heichler C, Scheibe K, Schmied A, Geppert CI, Schmid B, Wirtz S, et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut. 2020;69(7):1269-1282. [DOI:10.1136/gutjnl-2019-319200] [PMID]
33. Ke W, Zhang L, Dai Y. The role of IL-6 in immunotherapy of non-small cell lung cancer (NSCLC) with immune-related adverse events (irAEs). Thorac Cancer. 2020;11(4):835-839. [DOI:10.1111/1759-7714.13341] [PMID] []
34. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr. Stat3 as an oncogene. Cell. 1999;98(3):295-303. [DOI:10.1016/S0092-8674(00)81959-5] [PMID]
35. Zhang GP, Yue X, Li SQ. Cathepsin C Interacts with TNF-α/p38 MAPK Signaling Pathway to Promote Proliferation and Metastasis in Hepatocellular Carcinoma. Cancer Res Treat. 2020;52(1):10-23. [DOI:10.4143/crt.2019.145] [PMID] []
36. Jo E, Jang HJ, Yang KE, Jang MS, Huh YH, Yoo HS, et al. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement Med Ther. 2020;20(1):1. [DOI:10.1186/s12906-019-2780-5] [PMID] []
37. Schröder SK, Asimakopoulou A, Tillmann S, Koschmieder S, Weiskirchen R. TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells. Cytokine. 2020;135:155214. [DOI:10.1016/j.cyto.2020.155214] [PMID]
38. Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020;43(1):1-18. [DOI:10.1007/s13402-019-00489-1] [PMID]
39. Lan T, Chen L, Wei X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene Therapy. Cells. 2021;10(1):100. [DOI:10.3390/cells10010100] [PMID] []
40. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334-343. [DOI:10.1016/j.redox.2015.08.009] [PMID] []
41. Puhakka A, Kinnula V, Näpänkangas U, Säily M, Koistinen P, Pääkkö P, Soini Y. High
42. expression of nitric oxide synthases is a favorable prognostic sign in non-small cell lung carcinoma. APMIS. 2003;111(12):1137-46. [DOI:10.1111/j.1600-0463.2003.apm1111210.x] [PMID]
43. Anttila MA, Voutilainen K, Merivalo S, Saarikoski S, Kosma VM. Prognostic significance of iNOS in epithelial ovarian cancer. Gynecol Oncol. 2007;105(1):97-103. [DOI:10.1016/j.ygyno.2006.10.049] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb