Volume 12, Issue 4 (Vol.12 No.4 Jan 2024)                   rbmb.net 2024, 12(4): 664-673 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kadhum Kharmeet B, Khalaj-Kondori M, Hosseinpour feizi M A, Hajavi J. 5-Fluorouracil-Loaded PLGA Declined Expression of Pro-Inflammatory Genes IL-9, IL-17A, IL-23 and IFN- γ in the HT-29 Colon Cancer Cell Line. rbmb.net 2024; 12 (4) :664-673
URL: http://rbmb.net/article-1-1324-en.html
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Abstract:   (500 Views)
Background: Pro-inflammatory cytokines play critical roles in cancer pathobiology and have been considered potential targets for cancer management and therapy. Understanding the impact of cancer therapeutics such as 5-fluorouracil (5-FU) on their expression might shed light on development of novel combinational therapies. This study aimed to  encapsulate 5-FU into PLGA  and evaluate their effects on the expression of pro-inflammatory genes IL-9, IL-17-A, IL-23, and IFN-γ in the HT-29 cells.
Methods: PLGA-5-FU NPs were constructed and characterized by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The cytotoxicity was evaluated by MTT test and, the IC50 was identified. HT-29 cells were treated with different concentrations of the PLGA-5-FU NPs for 48 hours and, gene expression levels were analyzed by qRT-PCR.
Results: DLS and AFM analysis revealed that the prepared PLGA-5-FU NPs were negatively charged spherical-shaped particles with a mean size of 215.9 ± 43.3 nm. PLGA-5-FU NPs impacted the viability of HT-29 cells in a dose- and time-dependent manner. The qRT-PCR results revealed a dose-dependent decrease in the expression of IL-9, IL-17A, IL-23 and IFN-γ genes, and their expressions were significantly different in both 10 and 20 µg/mL treated groups compared to the control. However, although the treatment of HT-29 cells with 20 µg/mL free 5-FU resulted in decreased expression of the studied genes, the differences were not statistically significant compared to the control group.
Conclusions: PLGA-5-FU NPs significantly suppressed expression of the IL-9, IL-17A, IL-23 and IFN-γ genes, and the encapsulation of 5-FU into PLGA improved considerably impact of the 5-FU on the HT-29 cells.


Full-Text [PDF 411 kb]   (113 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/01/15 | Accepted: 2024/06/2 | Published: 2024/07/2

References
1. Lee HM, Lee HJ, Chang JE. Inflammatory cytokine: an attractive target for cancer treatment. Biomedicines. 2022;10(9):2116. [DOI:10.3390/biomedicines10092116] [PMID] []
2. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171(7):1611-24. e24. [DOI:10.1016/j.cell.2017.10.044] [PMID] []
3. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541-50. [DOI:10.1038/s41591-018-0014-x] [PMID] []
4. Tafani M, Russo A, Di Vito M, Sale P, Pellegrini L, Schito L, et al. Up‐regulation of pro‐inflammatory genes as adaptation to hypoxia in MCF‐7 cells and in human mammary invasive carcinoma microenvironment. Cancer Sci. 2010;101(4):1014-23. [DOI:10.1111/j.1349-7006.2010.01493.x] [PMID] []
5. Lee JE, Zhu Z, Bai Q, Brady TJ, Xiao H, Wakefield MR, Fang Y. The role of interleukin-9 in cancer. Pathol Oncol Res. 2020;26(4):2017-22. [DOI:10.1007/s12253-019-00665-6] [PMID]
6. Wan J, Wu Y, Ji X, Huang L, Cai W, Su Z, et al. IL-9 and IL-9-producing cells in tumor immunity. Cell Commun Signal. 2020;18(1):50. [DOI:10.1186/s12964-020-00538-5] [PMID] []
7. Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res. 2020;8:49. [DOI:10.1186/s40364-020-00228-x] [PMID] []
8. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 2009;206(7):1457-64. [DOI:10.1084/jem.20090207] [PMID] []
9. Shibabaw T, Teferi B, Ayelign B. The role of Th-17 cells and IL-17 in the metastatic spread of breast cancer: As a means of prognosis and therapeutic target. Front Immunol. 2023;14:1094823. [DOI:10.3389/fimmu.2023.1094823] [PMID] []
10. Neurath MF. IL-23 in inflammatory bowel diseases and colon cancer. Cytokine Growth Factor Rev. 2019;45:1-8. [DOI:10.1016/j.cytogfr.2018.12.002] [PMID]
11. Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P. Aberrant expression of lncRNAs SNHG6, TRPM2-AS1, MIR4435-2HG, and hypomethylation of TRPM2-AS1 promoter in colorectal cancer. Cell Biol Int. 2021;45(12):2464-2478. [DOI:10.1002/cbin.11692] [PMID]
12. Khalaj-Kondori M, Hosseinnejad M, Hosseinzadeh A, Behroz Sharif S, Hashemzadeh S. Aberrant hypermethylation
13. of OGDHL gene promoter in sporadic colorectal cancer. Curr Probl Cancer. 2020;44(1):100471. [DOI:10.1016/j.currproblcancer.2019.03.001] [PMID]
14. Ostovarpour M, Khalaj-Kondori M, Ghasemi T. Correlation between expression levels of lncRNA FER1L4 and RB1 in patients with colorectal cancer. Mol Biol Rep. 2021;48(5):4581-4589. [DOI:10.1007/s11033-021-06488-6] [PMID]
15. Ward EM, Sherman RL, Henley SJ, Jemal A, Siegel DA, Feuer EJ, Firth AU, Kohler BA, Scott S, Ma J, Anderson RN, Benard V, Cronin KA. Annual Report to the Nation on the Status of Cancer, Featuring Cancer in Men and Women Age 20-49 Years. J Natl Cancer Inst. 2019;111(12):1279-1297. [DOI:10.1093/jnci/djz106] [PMID] []
16. Karimpur Zahmatkesh A, Moqadami A, Khalaj-Kondori M. Insights into the radiotherapy-induced deferentially expressed RNAs in colorectal cancer management. Iran J Basic Med Sci. 2023;26(12):1380-1389.
17. Yaffee P, Osipov A, Tan C, Tuli R, Hendifar A. Review of systemic therapies for locally advanced and metastatic rectal cancer. J Gastrointest Oncol. 2015;6(2):185-200.
18. Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer. 2019;1871(2):419-433. [DOI:10.1016/j.bbcan.2019.04.006] [PMID] []
19. Khalaj-Kondori M, Ahmadi-Sani K, Hosseinzadeh A, Abtin M. Dendrosome-encapsulated beta-Boswellic acid boosts expression of the memory-related genes in the B65 cell line. Journal of Drug Delivery Science and Technology. 2020;59:101881. [DOI:10.1016/j.jddst.2020.101881]
20. Hajavi J, Ebrahimian M, Sankian M, Khakzad MR, Hashemi M. Optimization of PLGA formulation containing protein or peptide-based antigen: Recent advances. J Biomed Mater Res A. 2018;106(9):2540-2551. [DOI:10.1002/jbm.a.36423] [PMID]
21. Hector S, Prehn JH. Apoptosis signaling proteins as prognostic biomarkers in colorectal cancer: a review. Biochim Biophys Acta. 2009;1795(2):117-29. [DOI:10.1016/j.bbcan.2008.12.002] [PMID]
22. Feczkó T, Tóth J, Gyenis J. Comparison of the preparation of PLGA-BSA nano-and microparticles by PVA, poloxamer and PVP. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;319(1-3):188-95. [DOI:10.1016/j.colsurfa.2007.07.011]
23. Pandey AN, Rajpoot K, Jain SK. Using 5-fluorouracil-encored plga nanoparticles for the treatment of colorectal cancer: The in-vitro characterization and cytotoxicity studies. Nanomed J. 2020;7(3):211-24.
24. Wu P, Zhou Q, Zhu H, Zhuang Y, Bao J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer. 2020;20(1):354. [DOI:10.1186/s12885-020-06803-7] [PMID] []
25. Srivastava S, Gupta S, Mohammad S, Ahmad I. Development of α-tocopherol surface-modified targeted delivery of 5-fluorouracil-loaded poly-D, L-lactic-co-glycolic acid nanoparticles against oral squamous cell carcinoma. J Cancer Res Ther. 2019;15(3):480-490. [DOI:10.4103/jcrt.JCRT_263_18] [PMID]
26. Renauld JC, van der Lugt N, Vink A, van Roon M, Godfraind C, et al. Thymic lymphomas in interleukin 9 transgenic mice. Oncogene. 1994;9(5):1327-32.
27. Fischer M, Bijman M, Molin D, Cormont F, Uyttenhove C, van Snick J, et al. Increased serum levels of interleukin-9 correlate to negative prognostic factors in Hodgkin's lymphoma. Leukemia. 2003;17(12):2513-6. [DOI:10.1038/sj.leu.2403123] [PMID]
28. Qiu L, Lai R, Lin Q, Lau E, Thomazy DM, Calame D, Ford RJ, Kwak LW, Kirken RA, Amin HM. Autocrine release of interleukin-9 promotes Jak3-dependent survival of ALK+ anaplastic large-cell lymphoma cells. Blood. 2006;108(7):2407-15. [DOI:10.1182/blood-2006-04-020305] [PMID] []
29. Fukui Y, Kawashima M, Kawaguchi K, Takeuchi M, Hirata M, Kataoka TR, et al. Granulocyte-colony-stimulating factor-producing metaplastic carcinoma of the breast with significant elevation of serum interleukin-17 and vascular endothelial growth factor levels. Int Cancer Conf J. 2018;7(3):107-113. [DOI:10.1007/s13691-018-0330-5] [PMID] []
30. Song X, Wei C, Li X. The potential role and status of IL-17 family cytokines in breast cancer. Int Immunopharmacol. 2021;95:107544. [DOI:10.1016/j.intimp.2021.107544] [PMID]
31. Liu D, Zhang R, Wu J, Pu Y, Yin X, Cheng Y, et al. Interleukin-17A promotes esophageal adenocarcinoma cell invasiveness through ROS-dependent, NF-κB-mediated MMP-2/9 activation. Oncol Rep. 2017;37(3):1779-1785. [DOI:10.3892/or.2017.5426] [PMID]
32. Pellegrini C, Esposito M, Rossi E, Gisondi P, Piaserico S, Dapavo P, et al. Secukinumab in Patients with Psoriasis and a Personal History of Malignancy: A Multicenter Real-Life Observational Study. Dermatol Ther (Heidelb). 2022;12(11):2613-2626. [DOI:10.1007/s13555-022-00797-9] [PMID] []
33. Ljujic B, Radosavljevic G, Jovanovic I, Pavlovic S, Zdravkovic N, Milovanovic M, et al, Zdravkovic D, Arsenijevic N. Elevated serum level of IL-23 correlates with expression of VEGF in human colorectal carcinoma. Arch Med Res. 2010;41(3):182-9. [DOI:10.1016/j.arcmed.2010.02.009] [PMID]
34. Sheng S, Zhang J, Ai J, Hao X, Luan R. Aberrant expression of IL-23/IL-23R in patients with breast cancer and its clinical significance. Mol Med Rep. 2018;17(3):4639-4644. [DOI:10.3892/mmr.2018.8427] [PMID]
35. Jantschitsch C, Weichenthal M, Proksch E, Schwarz T, Schwarz A. IL-12 and IL-23 affect photocarcinogenesis differently. J Invest Dermatol. 2012;132(5):1479-86. [DOI:10.1038/jid.2011.469] [PMID]
36. Ziblat A, Nuñez SY, Raffo Iraolagoitia XL, Spallanzani RG, Torres NI, Sierra JM, et al. Interleukin (IL)-23 Stimulates IFN-γ Secretion by CD56bright Natural Killer Cells and Enhances IL-18-Driven Dendritic Cells Activation. Front Immunol. 2018;8:1959. [DOI:10.3389/fimmu.2017.01959] [PMID] []
37. Lo UG, Pong RC, Yang D, Gandee L, Hernandez E, Dang A, et al. IFNγ-Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Res. 2019;79(6):1098-1112. [DOI:10.1158/0008-5472.CAN-18-2207] [PMID]
38. Lo UG, Bao J, Cen J, Yeh HC, Luo J, Tan W, Hsieh JT. Interferon-induced IFIT5 promotes epithelial-to-mesenchymal transition leading to renal cancer invasion. Am J Clin Exp Urol. 2019;7(1):31-45.
39. Andrianifahanana M, Singh AP, Nemos C, Ponnusamy MP, Moniaux N, Mehta PP, et al. IFN-gamma-induced expression of MUC4 in pancreatic cancer cells is mediated by STAT-1 upregulation: a novel mechanism for IFN-gamma response. Oncogene. 2007;26(51):7251-61. [DOI:10.1038/sj.onc.1210532] [PMID]
40. Al-Saeedi RH, Khalaj-Kondori M, Hosseinpour Feizi MA, Hajavi J. DOX-PLGA nanoparticles effectively suppressed the expression of pro-inflammatory cytokines TNF-α, IL-6, iNOS, and IL-1β in MCF-7 breast cancer cell line. Rep Biochem Mol Biol. 2024;12 (4): 530-539.
41. Ni W, Li Z, Liu Z, Ji Y, Wu L, Sun S, et al. Dual-Targeting Nanoparticles: Codelivery of Curcumin and 5-Fluorouracil for Synergistic Treatment of Hepatocarcinoma. J Pharm Sci. 2019;108(3):1284-1295. [DOI:10.1016/j.xphs.2018.10.042] [PMID]
42. Handali S, Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, et al. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed Pharmacother. 2018;108:1259-1273. [DOI:10.1016/j.biopha.2018.09.128] [PMID]
43. Zahedian S, Hekmat A, Tackallou SH, Ghoranneviss M. The Impacts of Prepared Plasma-Activated Medium (PAM) Combined with Doxorubicin on the Viability of MCF-7 Breast Cancer Cells: A New Cancer Treatment Strategy. Rep Biochem Mol Biol. 2022;10(4):640-652. [DOI:10.52547/rbmb.10.4.640] [PMID] []
44. Ghodousi-Dehnavi E, Arjmand M, Akbari Z, Aminzadeh M, Haji Hosseini R. Anti-Cancer Effect of Dorema Ammoniacum Gum by Targeting Metabolic Reprogramming by Regulating APC, P53, KRAS Gene Expression in HT-29 Human Colon Cancer Cells. Rep Biochem Mol Biol. 2023;12(1):127-135.
45. Ocal H, Arica-Yegin B, Vural I, Goracinova K, Caliş S. 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Drug Dev Ind Pharm. 2014;40(4):560-7. [DOI:10.3109/03639045.2013.775581] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb