Volume 13, Issue 1 (Vol.13 No.1 Apr 2024)                   rbmb.net 2024, 13(1): 13-22 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Goudarzi Afshar S, Tamri P, Nourian A, Mahmoudi A. Catechin Hydrate Improves Hypertrophic Scar in Rabbit Ear Model via Reduction of Collagen Synthesis. rbmb.net 2024; 13 (1) :13-22
URL: http://rbmb.net/article-1-1337-en.html
Department of Pharmacology &Toxicology, School of Pharmacy, Hamadan University of ‎Medical Sciences, Hamadan, Iran.
Abstract:   (840 Views)
Background: Hypertrophic scar (HS) is a cutaneous condition results from abnormal wound healing following deep tissue injury. To date, there is no optimal treatment for this skin disorder. Catechins possess anti-inflammatory, antioxidant and anti-fibrotic properties. In this study we investigated the effects of catechin hydrate (CH) in rabbit ear model of HS.

Methods: A rabbit ear model of hypertrophic scar was set up. Ten New Zealand white rabbit were divided into 5 equal groups: non-treatment group, vehicle control, treated with intralesional injection of dimethyl sulfoxide (DMSO), and test groups, received intralesional injection of CH/DMSO solution at concentration of 0.25, 1.25 and, 2.5 mg/ml, respectively. The treatments were initiated 35 days after wounding once a week for 4 weeks.‎ ‏ The scar elevation index (SEI) and the epidermal thickness index (ETI) were measured using Hematoxylin and Eosin (H&E) staining and the amount of collagen deposition were determined after Masson' trichrome staining. In addition, the enzyme-linked immunosorbent assay (ELISA) ‎‏method was used to determine the levels of type І and ІІІ collagen and matrix metalloproteinase 1 (MMP1) in scar tissues.

Results: CH improved abnormal scarring at concentrations of 1.25 and 2.5 mg/ml and significantly (P<0.001) reduced the SEI and ETI. The levels of collagen type І and type ІІІ, and total collagen deposition were significantly (P<0.05) decreased in scar tissues of CH treated groups and no significant effect on MMP1 levels.

Conclusion: Our findings demonstrated that CH has the potential for the treatment of HSs.
Full-Text [PDF 418 kb]   (167 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2024/02/5 | Accepted: 2024/03/3 | Published: 2024/10/22

References
1. Coughlin MJ, Dockery GD, Craford ME, Hansen ST. Chapter 28 - Scars. In: Dockery Lower Extremity Soft Tissue & Cutaneous Plastic Surgery (Second Edition). Oxford: Saunders LTD; 2012:389-410. [DOI:10.1016/B978-0-7020-3136-6.00028-X]
2. Berman B, Maderal A, Raphael B. Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment. Dermatol Surg. 2017;43 Suppl 1:S3-S18. [DOI:10.1097/DSS.0000000000000819] [PMID]
3. Ogawa R. Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis. Int J Mol Sci. 2017;18(3):606. [DOI:10.3390/ijms18030606] [PMID] []
4. Grieb G, Steffens G, Pallua N, Bernhagen J, Bucala R. Circulating fibrocytes--biology and mechanisms in wound healing and scar formation. Int Rev Cell Mol Biol. 2011;291:1-19. [DOI:10.1016/B978-0-12-386035-4.00001-X] [PMID]
5. Zhang K, Garner W, Cohen L, Rodriguez J, Phan S. Increased types I and III collagen and transforming growth factor-beta 1 mRNA and protein in hypertrophic burn scar. J Invest Dermatol. 1995;104(5):750-4. [DOI:10.1111/1523-1747.ep12606979] [PMID]
6. Kim HY, Im HY, Chang HK, Jeong HD, Park JH, Kim HI, et al. Correlation between Collagen Type I/III Ratio and Scar Formation in Patients Undergoing Immediate Reconstruction with the Round Block Technique after Breast-Conserving Surgery. Biomedicines. 2023;11(4):1089. [DOI:10.3390/biomedicines11041089] [PMID] []
7. Tripathi S, Soni K, Agrawal P, Gour V, Mondal R, Soni V. Hypertrophic scars and keloids: a review and current treatment modalities. Biomed Dermatol. 2020;4(1):1-11. [DOI:10.1186/s41702-020-00063-8]
8. Wang ZC, Zhao WY, Cao Y, Liu YQ, Sun Q, Shi P, et al. The Roles of Inflammation in Keloid and Hypertrophic Scars. Front Immunol. 2020;11:603187. [DOI:10.3389/fimmu.2020.603187] [PMID] []
9. Mak K, Manji A, Gallant-Behm C, Wiebe C, Hart DA, Larjava H, Häkkinen L. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. J Dermatol Sci. 2009;56(3):168-80. [DOI:10.1016/j.jdermsci.2009.09.005] [PMID]
10. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev. 2019 ;99(1):665-706. [DOI:10.1152/physrev.00067.2017] [PMID] []
11. Huang C, Akaishi S, Hyakusoku H, Ogawa R. Are keloid and hypertrophic scar different forms of the same disorder? A fibroproliferative skin disorder hypothesis based on keloid findings. Int Wound J. 2014;11(5):517-22. [DOI:10.1111/j.1742-481X.2012.01118.x] [PMID] []
12. Traci AW. Inflammation as an orchestrator of cutaneous scar formation: a review of the literature. Plast Aesthet Res. 2020;7:54.
13. Qu Z, Chen Y, Du K, Qiao J, Chen L, Chen J, et al. ALA-PDT promotes the death and contractile capacity of hypertrophic scar fibroblasts through inhibiting the TGF-β1/Smad2/3/4 signaling pathway. Photodiagnosis Photodyn Ther. 2024;45:103915. [DOI:10.1016/j.pdpdt.2023.103915] [PMID]
14. Tosa M, Ogawa R. Photodynamic therapy for keloids and hypertrophic scars: a review. Scars Burn Heal. 2020;6:2059513120932059. [DOI:10.1177/2059513120932059] [PMID] []
15. Reinholz M, Guertler A, Schwaiger H, Poetschke J, Gauglitz GG. Treatment of keloids using 5-fluorouracil in combination with crystalline triamcinolone acetonide suspension: evaluating therapeutic effects by using non-invasive objective measures. J Eur Acad Dermatol Venereol. 2020;34(10):2436-2444. [DOI:10.1111/jdv.16354] [PMID]
16. Nair A, Gopi S. Chapter 2. Natural products with antiinflammatory activities against autoimmune myocarditis. In: Gopi S, Amalraj A, Kunnumakkara A, Thomas S, editors. Inflammation and Natural Products: Academic Press; 2021:65-82. [DOI:10.1016/B978-0-12-819218-4.00002-X]
17. Kim JM, Heo HJ. The roles of catechins in regulation of systemic inflammation. Food Sci Biotechnol. 2022;31(8):957-970. [DOI:10.1007/s10068-022-01069-0] [PMID] []
18. Abe K, Suzuki T, Ijiri M, Koyama Y, Isemura M, Kinae N. The anti-fibrotic effect of green tea with a high catechin content in the galactosamine-injured rat liver. Biomed Res. 2007;28(1):43-8. [DOI:10.2220/biomedres.28.43] [PMID]
19. Desdiani D, Rengganis I, Djauzi S, Setiyono A, Sadikin M, Jusman SWA. Fibropreventive and Antifibrotic Effects of Uncaria gambir on Rats with Pulmonary Fibrosis. Evid Based Complement Alternat Med. 2022;2022:6721958. [DOI:10.1155/2022/6721958] [PMID] []
20. Wang L, Yang G, Yuan L, Yang Y, Zhao H, Ho CT, Li S. Green Tea Catechins Effectively Altered Hepatic Fibrogenesis in Rats by Inhibiting ERK and Smad1/2 Phosphorylation. J Agric Food Chem. 2019;67(19):5437-5445. [DOI:10.1021/acs.jafc.8b05179] [PMID]
21. Zarei H, Tamri P, Asl SS, Soleimani M, Moradkhani S. Hydroalcoholic Extract of Scrophularia Striata Attenuates Hypertrophic Scar, Suppresses Collagen Synthesis, and Stimulates MMP2 and 9 Gene Expression in Rabbit Ear Model. J Pharmacopuncture. 2022;25(3):258-267. [DOI:10.3831/KPI.2022.25.3.258] [PMID] []
22. Song Y, Wang T, Yang L, Wu J, Chen L, Fan X, et al. EGCG inhibits hypertrophic scar formation in a rabbit ear model. J Cosmet Dermatol. 2023;22(4):1382-1391. [DOI:10.1111/jocd.15587] [PMID]
23. Song Y, Yu Z, Song B, Guo S, Lei L, Ma X, Su Y. Usnic acid inhibits hypertrophic scarring in a rabbit ear model by suppressing scar tissue angiogenesis. Biomed Pharmacother. 2018;108:524-30. [DOI:10.1016/j.biopha.2018.06.176] [PMID]
24. Zare R, Abdolsamadi H, Soleimani Asl S, Radi S, Bahrami H, Jamshidi S. The bFGF Can Improve Angiogenesis in Oral Mucosa and Accelerate Wound Healing. Rep Biochem Mol Biol. 2023;11(4):547-552. [DOI:10.52547/rbmb.11.4.547] [PMID] []
25. Oltulu P, Ince B, Kokbudak N, Findik S, Kilinc F. Measurement of Epidermis, Dermis, and Total Skin Thicknesses from Six Different Body Regions with a New Ethical Histometric Technique. Turk J Plast Surg. 2018;26(2):56-61. [DOI:10.4103/tjps.TJPS_2_17]
26. Shi HX, Lin C, Lin BB, Wang ZG, Zhang HY, Wu FZ, et al. The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS One. 2013;8(4):e59966. [DOI:10.1371/journal.pone.0059966] [PMID] []
27. Gratz D, Winkle AJ, Dalic A, Unudurthi SD, Hund TJ. Computational tools for automated histological image analysis and quantification in cardiac tissue. MethodsX. 2019;7:22-34. [DOI:10.1016/j.mex.2019.11.028] [PMID] []
28. Takahashi T, Yokoo Y, Inoue T, Ishii A. Toxicological studies on procyanidin B-2 for external application as a hair growing agent. Food Chem Toxicol. 1999;37(5):545-52. [DOI:10.1016/S0278-6915(99)00044-7] [PMID]
29. Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of "green" synthesized silver nanoparticles using tea polyphenols. Nanoscale. 2010;2:763-70. [DOI:10.1039/c0nr00046a] [PMID]
30. Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412-433. [DOI:10.1016/j.yrtph.2018.03.019] [PMID]
31. Razavi P, Rezaee SA, Akhondian S, Asgari N, Fatemi K, Mohajertehran* F. Matrix Metalloproteinase-3 but Not Matrix Metalloproteinase-9, Implicated in the Manifestation of Chronic Periodontitis. rbmb. 2023;11(4):656-62. [DOI:10.52547/rbmb.11.4.656] [PMID] []
32. Lee DE, Trowbridge RM, Ayoub NT, Agrawal DK. High-mobility Group Box Protein-1, Matrix Metalloproteinases, and Vitamin D in Keloids and Hypertrophic Scars. Plast Reconstr Surg Glob Open. 2015;3(6):e425. [DOI:10.1097/GOX.0000000000000391] [PMID] []
33. Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol. 1997;137(6):1445-57. [DOI:10.1083/jcb.137.6.1445] [PMID] []
34. Danielsen PL, Holst AV, Maltesen HR, Bassi MR, Holst PJ, Heinemeier KM, et al. Matrix metalloproteinase-8 overexpression prevents proper tissue repair. Surgery. 2011;150(5):897-906. [DOI:10.1016/j.surg.2011.06.016] [PMID]
35. Sicard A-A, Dao T, Suarez NG, Annabi B. Diet-Derived Gallated Catechins Prevent TGF-β-Mediated Epithelial-Mesenchymal Transition, Cell Migration and Vasculogenic Mimicry in Chemosensitive ES-2 Ovarian Cancer Cells. Nutr Cancer. 2021;73(1):169-80. [DOI:10.1080/01635581.2020.1733624] [PMID]
36. Nong X, Rajbanshi G, Chen L, Li J, Li Z, Liu T, et al. Effect of artesunate and relation with TGF-β1 and SMAD3 signaling on experimental hypertrophic scar model in rabbit ear. Arch Dermatol Res. 2019;311(10):761-72. [DOI:10.1007/s00403-019-01960-7] [PMID] []
37. Fan FY, Sang LX, Jiang M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules. 2017;22(3). [DOI:10.3390/molecules22030484] [PMID] []
38. Wang Z-C, Zhao W-Y, Cao Y, Liu Y-Q, Sun Q, Shi P, et al. The Roles of Inflammation in Keloid and Hypertrophic Scars. Front Immunol. 2020;11. [DOI:10.3389/fimmu.2020.603187] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb