1. Khakzad MR, Javanbakht M, Shayegan MR, Kianoush S, Omid F, Hojati M, Meshkat M. The complementary role of high sensitivity C-reactive protein in the diagnosis and severity assessment of autism. Res Autism Spectr Disord. 2012;6(3):1032-7. [
DOI:10.1016/j.rasd.2011.10.002]
2. Sayad A, Ghafouri-Fard S, Noroozi R, Omrani MD, Ganji M, Dastmalchi R, et al. Association Study of Sequence Variants in Voltage-gated Ca2+ Channel Subunit Alpha-1C and Autism Spectrum Disorders. Rep Biochem Mol Biol. 2019;8(1):56-62.
3. Sabbagh HJ, Al-Jabri BA, Alsulami MA, Hashem LA, Aljubour AA, Alamoudi RA. Prevalence and characteristics of autistic children attending autism centres in 2 major cities in Saudi Arabia: A cross-sectional study. Saudi Med J. 2021;42(4):419-27. [
DOI:10.15537/smj.2021.42.4.20200630] [
PMID] [
]
4. Guo X, Duan X, Chen H, He C, Xiao J, Han S, et al. Altered inter- and intrahemispheric functional connectivity dynamics in autistic children. Hum Brain Mapp. 2020;41(2):419-28. [
DOI:10.1002/hbm.24812] [
PMID] [
]
5. Khakzad MR, Salari F, Javanbakht M, Hojati M, Varasteh A, Sankian M, Meshkat M. Transforming Growth Factor Beta 1 869T/C and 915G/C Polymorphisms and Risk of Autism Spectrum Disorders. Rep Biochem Mol Biol. 2015;3(2):82-8.
6. Khakzad MR, Javanbakht M, Soltanifar A, Hojati M, Delgosha M, Meshkat M. The Evaluation of Food Allergy on Behavior in Autistic Children. Rep Biochem Mol Biol. 2012;1(1):37-42.
7. Yang W, Liu M, Zhang Q, Zhang J, Chen J, Chen Q, Suo L. Knockdown of miR-124 Reduces Depression-like Behavior by Targeting CREB1 and BDNF. Curr Neurovasc Res. 2020;17(2):196-203. [
DOI:10.2174/1567202617666200319141755] [
PMID] [
]
8. Zhang J, Liu L, Xu T, Zhang W, Zhao C, Li S, et al. Exploring cell-specific miRNA regulation with single-cell miRNA-mRNA co-sequencing data. BMC bioinformatics. 2021;22(1):578. [
DOI:10.1186/s12859-021-04498-6] [
PMID] [
]
9. Gruzdev SK, Yakovlev AA, Druzhkova TA, Guekht AB, Gulyaeva NV. The Missing Link: How Exosomes and miRNAs can Help in Bridging Psychiatry and Molecular Biology in the Context of Depression, Bipolar Disorder and Schizophrenia. Cell Mol Neurobiol. 2019;39(6):729-50. [
DOI:10.1007/s10571-019-00684-6] [
PMID]
10. Hicks SD, Carpenter RL, Wagner KE, Pauley R, Barros M, Tierney-Aves C, et al. Saliva MicroRNA Differentiates Children With Autism From Peers With Typical and Atypical Development. J Am Acad Child Adolesc Psychiatry. 2020;59(2):296-308. [
DOI:10.1016/j.jaac.2019.03.017] [
PMID] [
]
11. Wu X, Li W, Zheng Y. Recent Progress on Relevant microRNAs in Autism Spectrum Disorders. Int J Mol Sci. 2020;21(16):5904. [
DOI:10.3390/ijms21165904] [
PMID] [
]
12. Chaya T, Maeda Y, Sugimura R, Okuzaki D, Watanabe S, Varner LR, et al. Multiple knockout mouse and embryonic stem cell models reveal the role of miR-124a in neuronal maturation. J Biol Chem. 2022;298(9):102293. [
DOI:10.1016/j.jbc.2022.102293] [
PMID] [
]
13. Yang L, Zhu Y, Kong D, Gong J, Yu W, Liang Y, et al. EGF suppresses the expression of miR-124a in pancreatic β cell lines via ETS2 activation through the MEK and PI3K signaling pathways. Int J Biol Sci. 2019;15(12):2561-75. [
DOI:10.7150/ijbs.34985] [
PMID] [
]
14. Rao VTS, Fuh SC, Karamchandani JR, Woulfe JMJ, Munoz DG, Ellezam B, et al. Astrocytes in the Pathogenesis of Multiple Sclerosis: An In Situ MicroRNA Study. J Neuropathol Exp Neurol. 2019;78(12):1130-46. [
DOI:10.1093/jnen/nlz098] [
PMID]
15. Wegner S, Uhlemann R, Boujon V, Ersoy B, Endres M, Kronenberg G, Gertz K. Endothelial Cell-Specific Transcriptome Reveals Signature of Chronic Stress Related to Worse Outcome After Mild Transient Brain Ischemia in Mice. Mol Neurobiol. 2020;57(3):1446-58. [
DOI:10.1007/s12035-019-01822-3] [
PMID] [
]
16. Li J, Xu X, Liu J, Zhang S, Tan X, Li Z, et al. Decoding microRNAs in autism spectrum disorder. Mol Ther Nucleic Acids. 2022;30:535-46. [
DOI:10.1016/j.omtn.2022.11.005] [
PMID] [
]
17. Araghi-Niknam M, Fatemi SH. Levels of Bcl-2 and P53 are altered in superior frontal and cerebellar cortices of autistic subjects. Cell Mol Neurobiol. 2003;23(6):945-52. [
DOI:10.1023/B:CEMN.0000005322.27203.73] [
PMID]
18. Shen J, Su X, Wang Q, Ke Y, Zheng T, Mao Y, et al. Current and future perspectives on the regulation and functions of miR-545 in cancer development. Cancer Pathog Ther. 2023.
https://doi.org/10.1016/j.cpt.2023.09.001 [
DOI:10.1016/j.cpt.2023.09.001.] [
PMID] [
]
19. Cosín-Tomás M, Antonell A, Lladó A, Alcolea D, Fortea J, Ezquerra M, et al. Plasma miR-34a-5p and miR-545-3p as Early Biomarkers of Alzheimer's Disease: Potential and Limitations. Mol Neurobiol. 2017;54(7):5550-62. [
DOI:10.1007/s12035-016-0088-8] [
PMID]
20. Kalemaj Z, Marino MM, Santini AC, Tomaselli G, Auti A, Cagetti MG, et al. Salivary microRNA profiling dysregulation in autism spectrum disorder: A pilot study. Front Neurosci. 2022;16:945278. [
DOI:10.3389/fnins.2022.945278] [
PMID] [
]
21. Jaberi KR, Alamdari-Palangi V, Jaberi AR, Esmaeli Z, Shakeri A, Gheibi Hayat SM, et al. The Regulation, Functions, and Signaling of miR-153 in Neurological Disorders, and Its Potential as a Biomarker and Therapeutic Target. Curr Mol Med. 2023;23(9):863-75. [
DOI:10.2174/1566524023666220817145638] [
PMID]
22. You YH, Qin ZQ, Zhang HL, Yuan ZH, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;39(6) :BSR20181904. [
DOI:10.1042/BSR20181904] [
PMID] [
]
23. Halepoto DM, Bashir S, L ALA. Possible role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorder: current status. J Coll Physicians Surg Pak. 2014;24(4):274-8.
24. Jebelli A, Khalaj-Kondori M, Bonyadi M, Hosseinpour Feizi MA, Rahmati-Yamchi M. Beta-Boswellic Acid and Ethanolic Extract of Olibanum Regulating the Expression Levels of CREB-1 and CREB-2 Genes. Iran J Pharm Res. 2019;18(2):877-86.
25. Khalaj-Kondori M, Sadeghi F, Hosseinpourfeizi MA, Shaikhzadeh-Hesari F, Nakhlband A, Rahmati-Yamchi M. Boswellia serrata gum resin aqueous extract upregulatesBDNF but not CREB expression in adult male rat hippocampus. Turk J Med Sci. 2016;46(5):1573-8. [
DOI:10.3906/sag-1503-43] [
PMID]
26. Sikandar S, Minett MS, Millet Q, Santana-Varela S, Lau J, Wood JN, Zhao J. Brain-derived neurotrophic factor derived from sensory neurons plays a critical role in chronic pain. Brain. 2018;141(4):1028-39. [
DOI:10.1093/brain/awy009] [
PMID] [
]
27. Bryn V, Halvorsen B, Ueland T, Isaksen J, Kolkova K, Ravn K, Skjeldal OH. Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood. Eur J Paediatr Neurol. 2015;19(4):411-4. [
DOI:10.1016/j.ejpn.2015.03.005] [
PMID]
28. Genovese A, Butler MG. The Autism Spectrum: Behavioral, Psychiatric and Genetic Associations. Genes. 2023;14(3):677. [
DOI:10.3390/genes14030677] [
PMID] [
]
29. Xie S, Karlsson H, Dalman C, Widman L, Rai D, Gardner RM, et al. The Familial Risk of Autism Spectrum Disorder with and without Intellectual Disability. Autism Res. 2020;13(12):2242-50. [
DOI:10.1002/aur.2417] [
PMID] [
]
30. Abdelrahman AH, Eid OM, Ibrahim MH, Abd El-Fattah SN, Eid MM, Meguid NA. Evaluation of circulating miRNAs and mRNAs expression patterns in autism spectrum disorder. Egypt J Med Hum Genet. 2021;22(81):1-10. [
DOI:10.1186/s43042-021-00202-8]
31. Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009;12(4):399-408. [
DOI:10.1038/nn.2294] [
PMID] [
]
32. Zhang Y, Pang Y, Feng W, Jin Y, Chen S, Ding S, et al. miR-124 regulates early isolation-induced social abnormalities via inhibiting myelinogenesis in the medial prefrontal cortex. Cell Mol Life Sci. 2022;79(9):507. [
DOI:10.1007/s00018-022-04533-6] [
PMID]
33. Choi SY, Pang K, Kim JY, Ryu JR, Kang H, Liu Z, et al. Post-transcriptional regulation of SHANK3 expression by microRNAs related to multiple neuropsychiatric disorders. Mol Brain. 2015;8(1):74.
https://doi.org/10.1186/s13041-015-0165-3 [
DOI:10.1186/s13041-018-0415-2] [
PMID] [
]
34. Araghi-Niknam M, Fatemi SH. Levels of Bcl-2 and P53 Are Altered in Superior Frontal and Cerebellar Cortices of Autistic Subjects. Cell Mol Neurobiol. 2003;23(6):945-52. [
DOI:10.1023/B:CEMN.0000005322.27203.73] [
PMID]
35. Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, et al. MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res. 2010;124(1-3):183-91. [
DOI:10.1016/j.schres.2010.07.002] [
PMID] [
]
36. Rizzuti M, Melzi V, Gagliardi D, Resnati D, Meneri M, Dioni L, et al. Insights into the identification of a molecular signature for amyotrophic lateral sclerosis exploiting integrated microRNA profiling of iPSC-derived motor neurons and exosomes. Cell Mol Life Sci. 2022;79(3):189. [
DOI:10.1007/s00018-022-04217-1] [
PMID] [
]
37. Fyfe I. MicroRNAs - diagnostic markers in Parkinson disease? Nat Rev Neurol. 2020;16(2):65.
https://doi.org/10.1038/s41582-019-0305-y [
DOI:10.1038/s41582-021-00604-7] [
PMID]
38. Wang M, Qin L, Tang B. MicroRNAs in Alzheimer's Disease. Front in genetics. 2019;10:153. [
DOI:10.3389/fgene.2019.00153] [
PMID] [
]
39. Barbosa AG, Pratesi R, Paz GSC, dos Santos MAAL, Uenishi RH, Nakano EY, et al. Assessment of BDNF serum levels as a diagnostic marker in children with autism spectrum disorder. Sci Rep. 2020;10(1):17348. [
DOI:10.1038/s41598-020-74239-x] [
PMID] [
]