Volume 12, Issue 4 (Vol.12 No.4 Jan 2024)                   rbmb.net 2024, 12(4): 609-618 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammad Shafiee S, Amiri F, Yousefi F, Akbari Nasab N. Pro-Oxidant/ Antioxidant Balance Correlates with Red Blood Cell Indices and Anemia Severity in the Anemic Patients. rbmb.net 2024; 12 (4) :609-618
URL: http://rbmb.net/article-1-1348-en.html
Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran.
Abstract:   (570 Views)
Background: The oxidant/ antioxidant balance is disrupted in anemia. Antioxidant capacity depends on antioxidant enzyme activity and some trace elements. This study aimed to evaluate oxidant/ antioxidant status and its correlation with red blood cell indices and anemia severity in anemic patients.

Methods: Blood samples were taken from 90 anemic patients and 95 healthy people. Circulatory miR-122 was assayed by real-time PCR. Malondialdehyde (MDA), pro-oxidant/ antioxidant balance (PAB), supper oxide demitasse (SOD), glutathione peroxidase (GPxs) activity, total antioxidant capacity (TAC), and zinc were measured by colorimetric method. Selenium was also determined using atomic absorption.

Results: Selenium and zinc decreased significantly in the case group (**P=0.004 and ***P=0.000). The amount of miR-122 up-regulated in the anemia (**P=0.003). MDA was significantly raised in the case vs control (***P=0.0002). PAB was higher in the case group (**P=0.005). SOD and GPxs activity was decreased along with TAC in anemic patients (*P=0.02, **P=0.008, *P=0.038). Zinc and PAB levels correlated with some red blood cell indices. PAB was associated with anemia severity.

Conclusion: Increased PAB and decreased zinc/selenium increased oxidant levels in anemic patients. RBC indices and anemia severity were correlated with oxidant/ antioxidant somewhere.
Full-Text [PDF 263 kb]   (110 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2024/02/20 | Accepted: 2024/04/20 | Published: 2024/07/2

References
1. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva, World Health Organization, 2011 (WHO/NMH/NHD/MNM/11.1).
2. Wai KM, Sawada K, Kumagai M, Itai K, Tokuda I, Murashita K, Nakaji S, Ihara K. Relationship between Selected Trace Elements and Hematological Parameters among Japanese Community Dwellers. Nutrients. 2020;12(6):1615. [DOI:10.3390/nu12061615] [PMID] []
3. Zhou Q, Zhang B, Chen X, Chen Q, Hao L. Association of serum selenium with anemia‐related indicators and risk of anemia. Food Sci Nutr. 2021;9(6):3039-47. [DOI:10.1002/fsn3.2261] [PMID] []
4. Aslan M, Horoz M, Çelik H. Evaluation of oxidative status in iron deficiency anemia through total antioxidant capacity measured using an automated method. Turk J Haematol. 2011;28(1):42-6. [DOI:10.5152/tjh.2011.04] [PMID]
5. Karabulut A, Alp Avcı G, Avcı E. Increased oxidative stress in adult women with iron deficiency anemia. Universa Med. 2022;41(1):29-36. [DOI:10.18051/UnivMed.2022.v41.29-36]
6. Yadav K, Mishra OP, Khandhadiya K, Mishra SP, Mishra A, Singh A, et al. Markers of oxidative stress in children with iron deficiency anemia. Ped Hematol Oncol J. 2024;9(1): 9-14. [DOI:10.1016/j.phoj.2023.12.009]
7. Altuhafi A, Altun M, Hadwan MH. The Correlation between Selenium-Dependent Glutathione Peroxidase Activity and Oxidant/Antioxidant Balance in Sera of Diabetic Patients with Nephropathy. Rep Biochem Mol Biol. 2021;10(2):164-172. [DOI:10.52547/rbmb.10.2.164] [PMID] []
8. Ahmadzadeh A, Khodayar MJ, Salehcheh M, Nazari Khorasgani Z, Matin M. Evaluation of the Total Oxidant Status to the Antioxidant Capacity Ratio as a Valuable Biomarker in Breast Cancer Patients. Rep Biochem Mol Biol. 2023;12(2):277-283. [DOI:10.61186/rbmb.12.2.277] [PMID] []
9. Parvizi M, Moghaddam MD, Nazari S, Ashraf H, Kazemi Aghdam M. The association of pro-oxidant/antioxidant balance and blood parameters in patients with beta-thalassemia major: a cross-sectional study. Blood Res. 2023;58(4):201-207. [DOI:10.5045/br.2023.2023174] [PMID] []
10. Namazi G, Heidar Beygi S, Vahidi MH, Asa P, Bahmani F, Mafi A, Raygan F. Relationship Between Red Cell Distribution Width and Oxidative Stress Indexes in Patients with Coronary Artery Disease. Rep Biochem Mol Biol. 2023;12(2):241-250. [DOI:10.61186/rbmb.12.2.241] [PMID] []
11. Ghasemi F, Kamali A, Shokrpour M. Determination of pro-oxidant-antioxidant balance (PAB) assay in mothers with spontaneous abortion. Revista Bionatura. 2021;3(3):1970-1973. [DOI:10.21931/RB/2021.06.03.14]
12. Li J, Lo K, Shen G, Feng YQ, Huang YQ. Gender difference in the association of serum selenium with all-cause and cardiovascular mortality. Postgrad Med. 2020;132(2):148-55. [DOI:10.1080/00325481.2019.1701864] [PMID]
13. Cheng Y, Chen H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrient. 2021;13(12):4456. [DOI:10.3390/nu13124456] [PMID] []
14. Vahidinia AA, Mazdeh M, Adman S, Cheraghi Z. Comparison of the Patients Suffering from Relapsing-Remitting Multiple Sclerosis with Healthy Individuals regarding Serum Selenium and Zinc Levels. Avicenna J Clin Med. 2020; 27(3):157-63. [DOI:10.52547/ajcm.27.3.157]
15. Rashid N, Ghaznavi S. Association of levels ofserum selenium with anemia in primary schoolchildren. Biomedica. 2015;31(2):128-31.
16. Petkova-Marinova TV, Ruseva BK, Atanasova1 BD. Selenium deficiency as a risk factor for development of anemia. J Biomed Clin Res. 2017;10(1):9-17. [DOI:10.1515/jbcr-2017-0002]
17. Liao C, Carlson BA, Paulson RF, Prabhu KS. The intricate role of selenium and selenoproteins in erythropoiesis. Free Radic Biol Med. 2018;127(1):165-71. [DOI:10.1016/j.freeradbiomed.2018.04.578] [PMID] []
18. Van Nhien N, Khan NC, Yabutani T, Ninh NX, Le TK, Motonaka J, et al. Relationship of low serum selenium to anemia among primary school children living in rural Vietnam. J Nutr Sci Vitaminol. 2008;54(6):454-9. [DOI:10.3177/jnsv.54.454] [PMID]
19. MacDonell SO, Miller JC, Harper MJ, Reid MR, Haszard JJ, Gibson RS, Houghton LA. Multiple Micronutrients, Including Zinc, Selenium and Iron, Are Positively Associated with Anemia in New Zealand Aged Care Residents. Nutrient. 2021;13(4):1072. [DOI:10.3390/nu13041072] [PMID] []
20. Jeng SS, Chen YH. Association of Zinc with Anemia. Nutrient. 2022;14(22):4918. [DOI:10.3390/nu14224918] [PMID] []
21. Houghton LA, Parnell WR, Thomson CD, Green TJ, Gibson RS. Serum Zinc Is a Major Predictor of Anemia and Mediates the Effect of Selenium on Hemoglobin in School-Aged Children in a Nationally Representative Survey in New Zealand. J Nutr. 2016;146(9):1670-6. [DOI:10.3945/jn.116.235127] [PMID]
22. Akça H, Polat A, Koca C. Determination of total oxidative stress and total antioxidant capacity before and after the treatment of iron-deficiency anemia. J Clin Lab Anal.2013;27(3):227-30. [DOI:10.1002/jcla.21589] [PMID] []
23. Hasani M, Djalalinia S, Khazdooz M, Asayesh H, Zarei M, Gorabi AM, et al. Effect of selenium supplementation on antioxidant markers: A systematic review and meta-analysis of randomized controlled trials. Hormones. 2019;18(4):451-62. [DOI:10.1007/s42000-019-00143-3] [PMID]
24. Mansour AT, Goda AA, Omar EA, Khalil HS, Esteban MÁ. Dietary supplementation of organic selenium improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles. Fish Shellfish Immunol. 2017;68:516-24. [DOI:10.1016/j.fsi.2017.07.060] [PMID]
25. Mousavi SM, Hajishafiee M, Clark CCT, Borges do Nascimento IJ, Milajerdi A, Amini MR, Esmaillzadeh A. Clinical effectiveness of zinc supplementation on the biomarkers of oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2020;161:105166. [DOI:10.1016/j.phrs.2020.105166] [PMID]
26. Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR. Zinc and Oxidative Stress: Current Mechanisms. Antioxidant (Basel). 2017;6(2): 24. [DOI:10.3390/antiox6020024] [PMID] []
27. Zanao RA, Barbosa Jr F, Souza SS, Krug FJ, Abdalla AL. Direct determination of selenium in whole blood by electrothermal atomic absorption spectrometry using W-Rh-coated platform and co-injection of Rh as thermal stabilizer. Spectrochimica Acta Part B: Atomic Spectroscopy. 2002;57(2):291-301. [DOI:10.1016/S0584-8547(01)00391-3]
28. Molaei S, Amiri F, Salimi R, Ferdowsi S, Bahadori M. Therapeutic effects of mesenchymal stem cells-conditioned medium derived from suspension cultivation or silymarin on liver failure mice. Mol Biol Rep. 2022;49(11):10315-10325. [DOI:10.1007/s11033-022-07785-4] [PMID]
29. Rafiee M, Amiri F, Mohammadi MH, Hajifathali A. MicroRNA-125b as a valuable predictive marker for outcome after autologous hematopoietic stem cell transplantation. BMC Cancer. 2023;23(1):202. [DOI:10.1186/s12885-023-10665-0] [PMID] []
30. Muthiah M, Sivanandham R, Kannan R, Khandelwal S, Mohan KS. Analysis of serum oxidant - antioxidant status in patients with iron deficiency anemia (IDA). Int J Pharm Bio Sci. 2013;4(3):(B)449-453.
31. Bay A, Dogan M, Bulan K, Kaba S, Demir N, Öner A. A study on the effects of pica and iron-deficiency anemia on oxidative stress, antioxidant capacity and trace elements. Hum Exp Toxicol. 2013;32(9):895-903. [DOI:10.1177/0960327113475676] [PMID]
32. Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. Circulating microRNAs and hepcidin as predictors of iron homeostasis and anemia among school children: a biochemical and cross-sectional survey analysis. Eur J Med Res. 2023;28(1):595. [DOI:10.1186/s40001-023-01579-5] [PMID] []
33. Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci. 2020;21(18):6902. [DOI:10.3390/ijms21186902] [PMID] []
34. Zeinali F, Aghaei Zarch SM, Jahan-Mihan A, Kalantar SM, Vahidi Mehrjardi MY, Fallahzadeh H, et al. Circulating microRNA-122, microRNA-126-3p and microRNA-146a are associated with inflammation in patients with pre-diabetes and type 2 diabetes mellitus: A case control study. PLoS One. 2021;16 (6):e0251697. [DOI:10.1371/journal.pone.0251697] [PMID] []
35. Georgatzakou HT, Fortis SP, Papageorgiou EG, Antonelou MH, Kriebardis AG. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecule. 2022;12(6):803 [DOI:10.3390/biom12060803] [PMID] []
36. Dreischer P, Duszenko M, Stein J, Wieder T. Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells.2022;11(3):503. [DOI:10.3390/cells11030503] [PMID] []
37. Sharif Y, Irshad S, Tariq MH, Qadeer MI, Sharif S. Correlation of serum trace elements (copper and selenium) in patients with beta thalassemia major in Pakistan. Trace Elem Electroly. 2019;37(1):17-22. [DOI:10.5414/TEX01595]
38. Abdelhaleim AF, Abdo Soliman JS, Amer AY, Abdo Soliman JS. Association of Zinc Deficiency with Iron Deficiency Anemia and its Symptoms: Results from a Case-control Study. Cureus. 2019;11(1):e3811. [DOI:10.7759/cureus.3811] [PMID] []
39. Fibach E. The Redox Balance and Membrane Shedding in RBC Production, Maturation, and Senescence. Front Physiol. 2021;12:604738. [DOI:10.3389/fphys.2021.604738] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb