Volume 13, Issue 1 (Vol.13 No.1 Apr 2024)                   rbmb.net 2024, 13(1): 51-58 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jalili S, Hashemi S M A, Sarvari* J. SARS-COV-2 ORF9b Dysregulate Fibrinogen and Albumin Genes in a Liver Cell Line. rbmb.net 2024; 13 (1) :51-58
URL: http://rbmb.net/article-1-1358-en.html
Institute of police equipment and technologies, policing sciences and social studies research institute, Tehran, Iran.
Abstract:   (506 Views)
Background: Individuals experiencing severe cases of Coronavirus Disease 2019 (COVID-19) exhibited elevated fibrinogen levels and decreased albumin levels, potentially linked to the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) proteins. Consequently, our study endeavors to examine the impact of SARS-CoV-2 ORF9b on the expression of fibrinogen and albumin genes within the Hep-G2 cell line.

Methods: In this study, the Hep-G2 liver cell line was utilized alongside the plasmid pcDNA3.1 hyg+ containing ORF9b from the SARS-CoV-2 strain originating in Wuhan. Transfection procedures were executed, and the transfected cells were selected utilizing hygromycin B. Validation of ORF9b expression was conducted through SYBR green-based real-time PCR, and the expression of the Fibrinogen α (FGA), Fibrinogen β (FGB), Fibrinogen γ (FGG), and Albumin (ALB) genes was quantified using the same method.

Results: The real-time PCR analysis revealed a significant upregulation of fibrinogen genes—α (P=0.03), β (P=0.02), and γ (P=0.029) in Hep-G2 cells containing ORF9b compared to control cells. Furthermore, the findings indicated a markedly lower expression level of albumin in Hep-G2 cells harboring ORF9b compared to the control cells (P=0.028).

Conclusion: The findings suggest that SARS-CoV-2 ORF9b could potentially influence the course of SARS-CoV-2 infection by triggering the expression of α, β, and γ fibrinogen gene chains while suppressing the albumin gene. Further investigations are warranted to validate these observations across various SARS-CoV-2 strains exhibiting differing levels of pathogenicity.
Full-Text [PDF 274 kb]   (123 Downloads)    
Type of Article: Original Article | Subject: Microbiology
Received: 2024/03/8 | Accepted: 2024/06/2 | Published: 2024/10/22

References
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. [DOI:10.1056/NEJMoa2001017] [PMID] []
2. Arefinia N, Ramezani A, Farokhnia M, Zadeh AMA, Yaghobi R, Sarvari J. Association between expression of ZBP1, AIM2, and MDA5 genes and severity of COVID-19. EXCLI J.2022;21:1171-83.
3. Hashemi SMA, Thijssen M, Hosseini SY, Tabarraei A, Pourkarim MR, Sarvari J. Human gene polymorphisms and their possible impact on the clinical outcome of SARS-CoV-2 infection. Arch Virol. 2021;166(8):2089-2108. [DOI:10.1007/s00705-021-05070-6] [PMID] []
4. Faraji SN, Raee MJ, Hashemi SMA, Daryabor G, Tabrizi R, Dashti FS, et al. Human interaction targets of SARS-CoV-2 spike protein: A systematic review. Eur J Inflamm. 2022;20:1721727X221095382. [DOI:10.1177/1721727X221095382] []
5. Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The Architecture of SARS-CoV-2 Transcriptome. Cell. 2020;181(4):914-921.e10. [DOI:10.1016/j.cell.2020.04.011] [PMID] []
6. Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97-109. [DOI:10.1016/j.antiviral.2014.06.013] [PMID] []
7. McBride R, Fielding BC. The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses. 2012;4(11):2902-23. [DOI:10.3390/v4112902] [PMID] []
8. Xu K, Zheng B-J, Zeng R, Lu W, Lin Y-P, Xue L, et al. Severe acute respiratory syndrome coronavirus accessory protein 9b is a virion-associated protein. Virology. 2009;388(2):279-85. [DOI:10.1016/j.virol.2009.03.032] [PMID] []
9. Guo JP, Petric M, Campbell W, McGeer PL. SARS corona virus peptides recognized by antibodies in the sera of convalescent cases. Virology. 2004;324(2):251-6. [DOI:10.1016/j.virol.2004.04.017] [PMID] []
10. Jiang HW, Li Y, Zhang HN, Wang W, Yang X, Qi H, et al. SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun. 2020;11(1):3581. [DOI:10.1038/s41467-020-17488-8] [PMID] []
11. Gao X, Zhu K, Qin B, Olieric V, Wang M, Cui S. Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. Nat Commun. 2021;12(1):2843. [DOI:10.1038/s41467-021-23118-8] [PMID] []
12. Faizan MI, Chaudhuri R, Sagar S, Albogami S, Chaudhary N, Azmi I, et al. NSP4 and ORF9b of SARS-CoV-2 Induce Pro-Inflammatory Mitochondrial DNA Release in Inner Membrane-Derived Vesicles. Cells. 2022;11(19):2969. [DOI:10.3390/cells11192969] [PMID] []
13. West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11(6):389-402. [DOI:10.1038/nri2975] [PMID] []
14. Zhong F, Liang S, Zhong Z. Emerging Role of Mitochondrial DNA as a Major Driver of Inflammation and Disease Progression. Trends Immunol. 2019;40(12):1120-1133. [DOI:10.1016/j.it.2019.10.008] [PMID]
15. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34-45. [DOI:10.1038/nri3345] [PMID]
16. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847. [DOI:10.1111/jth.14768] [PMID] []
17. Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681-686. [DOI:10.1016/S2213-2600(20)30243-5] [PMID]
18. Viana-Llamas MC, Arroyo-Espliguero R, Silva-Obregón JA, Uribe-Heredia G, Núñez-Gil I, García-Magallón B, et al. Hypoalbuminemia on admission in COVID-19 infection: An early predictor of mortality and adverse events. A retrospective observational study. Med Clin (Barc). 2021;156(9):428-436. [DOI:10.1016/j.medcli.2020.12.018] []
19. Dowran R, Sarvari J, Moattari A, Fattahi MR, Ramezani A, Hosseini SY. Analysis of TLR7, SOCS1 and ISG15 immune genes expression in the peripheral blood of responder and non-responder patients with chronic Hepatitis C. Gastroenterol Hepatol Bed Bench. 2017;10(4):272-277.
20. de Moerloose P, Casini A, Neerman-Arbez M. Congenital fibrinogen disorders: an update. Semin Thromb Hemost. 2013;39(6):585-95. [DOI:10.1055/s-0033-1349222] [PMID]
21. Sui J, Noubouossie DF, Gandotra S, Cao L. Elevated Plasma Fibrinogen Is Associated With Excessive Inflammation and Disease Severity in COVID-19 Patients. Front Cell Infect Microbiol. 2021;11:734005. [DOI:10.3389/fcimb.2021.734005] [PMID] []
22. Long W, Yang J, Li Z, Li J, Chen S, Chen D, et al. Abnormal Fibrinogen Level as a Prognostic Indicator in Coronavirus Disease Patients: A Retrospective Cohort Study. Front Med (Lausanne). 2021;8:687220. [DOI:10.3389/fmed.2021.687220] [PMID] []
23. Rezaei-Tavirani M, Rostami Nejad M, Arjmand B, Rezaei Tavirani S, Razzaghi M, Mansouri V. Fibrinogen Dysregulation is a Prominent Process in Fatal Conditions of COVID-19 Infection; a Proteomic Analysis. Arch Acad Emerg Med. 2021;9(1):e26.
24. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. China medical treatment expert group for Covid-19. Clinical characteristics of coronavirus disease. N Engl J Med. 2020 Apr 30;382(18):1708-1720. [DOI:10.1056/NEJMoa2002032] [PMID] []
25. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. [DOI:10.1001/jama.2020.1585] [PMID] []
26. Afşin A, Tibilli H, Hoşoğlu Y, Asoğlu R, Süsenbük A, Markirt S, Tuna VD. Fibrinogen-to-albumin ratio predicts mortality in COVID-19 patients admitted to the intensive care unit. Adv Respir Med. 2021;89(6), 557-564. [DOI:10.5603/ARM.a2021.0098] [PMID]
27. Wang Y, Liu S, Liu H, Li W, Lin F, Jiang L, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020;73(4):807-816. https://doi.org/10.1016/j.jhep.2020.06.028 [DOI:10.1016/j.jhep.2020.05.002]
28. Scozzi D, Cano M, Ma L, Zhou D, Zhu JH, O'Halloran JA, et al. Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19. JCI insight. 2021;6(4):e143299. [DOI:10.1172/jci.insight.143299] [PMID] []
29. Andargie TE, Tsuji N, Seifuddin F, Jang MK, Yuen PS, Kong H, et al. Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight. 2021;6(7):e147610. [DOI:10.1172/jci.insight.147610] [PMID] []
30. Costa TJ, Potje SR, Fraga-Silva TF, da Silva-Neto JA, Barros PR, Rodrigues D, et al. Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage. Vascul Pharmacol. 2022;142:106946. [DOI:10.1016/j.vph.2021.106946] [PMID] []
31. McCarthy CG, Wenceslau CF, Goulopoulou S, Ogbi S, Baban B, Sullivan JC, Matsumoto T, Webb RC. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res. 2015;107(1):119-30. [DOI:10.1093/cvr/cvv137] [PMID] []
32. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-45. e9. [DOI:10.1016/j.cell.2020.04.026] [PMID] []
33. Maradi R, Joshi V, Balamurugan V, Susan Thomas D, Goud M. Importance of Microminerals for Maintaining Antioxidant Function After COVID-19-induced Oxidative Stress. Rep Biochem Mol Biol. 2022;11(3):479-486. [DOI:10.52547/rbmb.11.3.479] [PMID] []
34. Belinskaia DA, Voronina PA, Shmurak VI, Vovk MA, Batalova AA, Jenkins RO, Goncharov NV. The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants (Basel). 2020;9(10):966. [DOI:10.3390/antiox9100966] [PMID] []
35. Huang J, Cheng A, Kumar R, Fang Y, Chen G, Zhu Y, Lin S. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol. 2020;92(10):2152-2158. [DOI:10.1002/jmv.26003] [PMID] []
36. Soetedjo NNM, Iryaningrum MR, Damara FA, Permadhi I, Sutanto LB, Hartono H, Rasyid H. Prognostic properties of hypoalbuminemia in COVID-19 patients: A systematic review and diagnostic meta-analysis. Clin Nutr ESPEN. 2021;45:120-126. [DOI:10.1016/j.clnesp.2021.07.003] [PMID] []
37. Franch-Arcas G. The meaning of hypoalbuminaemia in clinical practice. Clin Nutr. 2001;20(3):265-9. [DOI:10.1054/clnu.2001.0438] [PMID]
38. Aziz M, Fatima R, Lee-Smith W, Assaly R. The association of low serum albumin level with severe COVID-19: a systematic review and meta-analysis. Crit Care. 2020;24(1):255. [DOI:10.1186/s13054-020-02995-3] [PMID] []
39. Kheir M, Saleem F, Wang C, Mann A, Chua J. Higher albumin levels on admission predict better prognosis in patients with confirmed COVID-19. PLoS One. 2021;16(3):e0248358. [DOI:10.1371/journal.pone.0248358] [PMID] []
40. Nazar Hasan Anber Z, Oead Mohammed Saleh B, Waheab Al-Obidy M. Hepatocellular Damage and Severity of COVID-19 Infection in Iraqi Patients: A Biochemical Study. Rep Biochem Mol Biol. 2022;11(3):524-531. [DOI:10.52547/rbmb.11.3.524] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb