Volume 13, Issue 1 (Vol.13 No.1 Apr 2024)                   rbmb.net 2024, 13(1): 124-136 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ajel M, Jazayeri S M, Behboudi E, Poorebrahim M, Ahangar Oskouee M, Bannazadeh Baghi H, et al . Investigation of the Mutations in the SARS-CoV-2 Envelope Protein and Its Interaction with the PALS1 by Molecular Docking. rbmb.net 2024; 13 (1) :124-136
URL: http://rbmb.net/article-1-1377-en.html
Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran & Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
Abstract:   (404 Views)
Background: The envelope (E) protein of globally circulating severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is highly conserved. This study aimed to find the mutation rate of the E genes in COVID-19 patients, and also to evaluate the conformational characteristics of viral E protein.

Methods: In this study, 120 patients with SARS-CoV-2 positive test results were selected according to real-time PCR assay. Specific primers for conventional PCR have been used to amplify E gene; furthermore, to identify the E gene mutations, direct sequencing of the E genes was also done. Bioinformatics techniques were used to investigate the possible effects of antigenic changes and 3D characteristics of amino acid substitutions. Also, the immunogenicity of wild-type and mutant E was analyzed utilizing a ClusPro docking server and the IEDB online platform.

Results: A total of 120 COVID-19 patients were included (57.5% were male and 42.5% female), with an overall mean age of 55.70±10.61 years old. Of 10 nucleotide changes, 8 (80%) were silent. Also, 2 (20%) missense mutations (amino acid altering) were found in the E gene (L73F and S68F).

Conclusion: These mutations insert some new helix structures in the E mutants. Also, the results of molecular docking studies indicated that both S68F and L73F mutations could notably enhance the stability and binding affinity of protein E's C-terminal motif to the Protein Associated with LIN7 1, MAGUK P55 Family Member (PALS1) which may probably increase local viral spread, and infiltration of immune cells into lung alveolar spaces.
Full-Text [PDF 356 kb]   (90 Downloads)    
Type of Article: Original Article | Subject: Microbiology
Received: 2024/04/22 | Accepted: 2024/08/25 | Published: 2024/10/22

References
1. Rostami-Far Z, Rahmani K, Mansouri K, Khadem Erfan MB, Shaveisi-Zadeh F, Nikkhoo B. Genetic Regulation of Interleukin-6 and Interleukin-10 in COVID-19 Infection. Rep Biochem Mol Biol. 2023 Jul;12(2):284-293. [DOI:10.61186/rbmb.12.2.284] [PMID] []
2. Emadi MS, Soltani S, Noori B, Zandi M, Shateri Z, Tabibzadeh A, et al. Highly Conserve Sequences in Envelope, Nucleoprotein and RNA-Dependent RNA Polymerase of SARS-CoV-2 in Nasopharyngeal Samples of the COVID-19 Patients; a Diagnostic Target for Further Studies. J Cell Mol Anesth. 2022;7(2):78-83.
3. Zandi M, Soltani S, Tabibzadeh A, Nasimzadeh S, Behboudi E, Zakeri A, et al. Partial sequence conservation of SARS-CoV-2 NSP-2, NSP-12, and Spike in stool samples from Abadan, Iran. Biotechnol Appl Biochem. 2023;70(1):201-209. [DOI:10.1002/bab.2343] [PMID] []
4. Behboudi E, Hamidi V, Gholizadeh F, Grala EM, Ghelmani Y, Nakhaie M, et al. Association between ABO blood groups and rhesus antigen and susceptibility to COVID-19 in the Yazd hospital. New Microbes New Infect. 2021;44:100934. [DOI:10.1016/j.nmni.2021.100934] [PMID] []
5. Chan JF, To KK, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol. 2013;21(10):544-55. [DOI:10.1016/j.tim.2013.05.005] [PMID] []
6. Mostafa-Hedeab G. ACE2 as Drug Target of COVID-19 Virus Treatment, Simplified Updated Review. Rep Biochem Mol Biol. 2020;9(1):97-105. [DOI:10.29252/rbmb.9.1.97] [PMID] []
7. Zandi M, Behboudi E, Soltani S. Role of Glycoprotein Hemagglutinin-Esterase in COVID-19 Pathophysiology? Stem Cell Rev Rep. 2021;17(6):2359-2360. [DOI:10.1007/s12015-021-10210-1] [PMID] []
8. Jafarpour R, Pashangzadeh S, Dowran R. Host factors: Implications in immunopathogenesis of COVID-19. Pathol Res Pract. 2021;228:153647. [DOI:10.1016/j.prp.2021.153647] [PMID] []
9. Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Front Mol Biosci. 2020;7:605236. [DOI:10.3389/fmolb.2020.605236] [PMID] []
10. Neitthoffer B, Alvarez F, Larrous F, Caillet-Saguy C, Etienne-Manneville S, Boëda B. A short sequence in the tail of SARS-CoV-2 envelope protein controls accessibility of its PDZ-binding motif to the cytoplasm. J Biol Chem. 2024;300(1). [DOI:10.1016/j.jbc.2023.105575] [PMID] []
11. Zhu Y, Alvarez F, Wolff N, Mechaly A, Brûlé S, Neitthoffer B, et al. Interactions of SARS-CoV-2 protein E with cell junctions and polarity PDZ-containing proteins. bioRxiv. 2021:2021.12.04.471219. [DOI:10.1101/2021.12.04.471219]
12. Park SH, Siddiqi H, Castro DV, De Angelis AA, Oom AL, Stoneham CA, Let al. Interactions of SARS-CoV-2 envelope protein with amilorides correlate with antiviral activity. PLoS Pathog. 2021;17(5):e1009519. [DOI:10.1371/journal.ppat.1009519] [PMID] []
13. Javorsky A, Humbert PO, Kvansakul M. Structural basis of coronavirus E protein interactions with human PALS1 PDZ domain. Commun Biol. 2021;4(1):724. [DOI:10.1038/s42003-021-02250-7] [PMID] []
14. Lo Cascio E, Toto A, Babini G, De Maio F, Sanguinetti M, Mordente A, et al. Structural determinants driving the binding process between PDZ domain of wild type human PALS1 protein and SLiM sequences of SARS-CoV E proteins. Comput Struct Biotechnol J. 2021;19:1838-1847. [DOI:10.1016/j.csbj.2021.03.014] [PMID] []
15. Faraji SN, Raee MJ, Hashemi SMA, Daryabor G, Tabrizi R, Dashti FS, et al. Human interaction targets of SARS-CoV-2 spike protein: A systematic review. Eur J Inflamm. 2022; 20:1721727X221095382. [DOI:10.1177/1721727X221095382] []
16. Khan MI, Khan ZA, Baig MH, Ahmad I, Farouk AE, Song YG, Dong JJ. Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight. PLoS One. 2020;15(9):e0238344. [DOI:10.1371/journal.pone.0238344] [PMID] []
17. Rahman MS, Hoque MN, Islam MR, Islam I, Mishu ID, Rahaman MM, et al. Mutational insights into the envelope protein of SARS-CoV-2. Gene Rep. 2021;22:100997. [DOI:10.1016/j.genrep.2020.100997] [PMID] []
18. Mou K, Abdalla M, Wei DQ, Khan MT, Lodhi MS, Darwish DB, et al. Emerging mutations in envelope protein of SARS-CoV-2 and their effect on thermodynamic properties. Inform Med Unlocked. 2021;25:100675. [DOI:10.1016/j.imu.2021.100675] [PMID] []
19. Ayatollahi AA, Aghcheli B, Amini A, Nikbakht H, Ghassemzadehpirsala P, Behboudi E, Rajabi A, Tahamtan A. Association between blood groups and COVID-19 outcome in Iranian patients. Future Virol. 2021;16(10):657-65. [DOI:10.2217/fvl-2021-0090] [PMID] []
20. Hassan SS, Choudhury PP, Roy B. SARS-CoV2 envelope protein: non-synonymous mutations and its consequences. Genomics. 2020;112(6):3890-3892. [DOI:10.1016/j.ygeno.2020.07.001] [PMID] []
21. DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res. 2014;194:124-37. [DOI:10.1016/j.virusres.2014.07.024] [PMID] []
22. Rahmanzade R, Rahmanzadeh R, Hashemian SM, Tabarsi P. Iran's Approach to COVID-19: Evolving Treatment Protocols and Ongoing Clinical Trials. Front Public Health. 2020;8:551889. [DOI:10.3389/fpubh.2020.551889] [PMID] []
23. Rafieepoor M, Mohebbi SR, Hosseini SM, Tanhaei M, Saeedi Niasar M, Kazemian S, et al. Detection of SARS-CoV-2 RNA in selected agricultural and food retail environments in Tehran, Iran. Front Public Health. 2022;10:823061. [DOI:10.3389/fpubh.2022.823061] [PMID] []
24. Soltani A, Jamalidoust M, Hosseinpour A, Vahedi M, Ashraf H, Yousefinejad S. First molecular-based detection of SARS-CoV-2 virus in the field-collected houseflies. Sci Rep. 2021;11(1):13884. [DOI:10.1038/s41598-021-93439-7] [PMID] []
25. Ko J, Park H, Seok C. GalaxyTBM: template-based modeling by building a reliable core and refining unreliable local regions. BMC Bioinformatics. 2012;13:198. [DOI:10.1186/1471-2105-13-198] [PMID] []
26. Heo L, Park H, Seok C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013;41(Web Server issue):W384-8. [DOI:10.1093/nar/gkt458] [PMID] []
27. Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008;36(Web Server issue):W513-8. [DOI:10.1093/nar/gkn254] [PMID] []
28. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein-protein docking. Nat Protoc. 2017;12(2):255-278. [DOI:10.1038/nprot.2016.169] [PMID] []
29. Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics. 2016;32(23):3676-3678. [DOI:10.1093/bioinformatics/btw514] [PMID]
30. Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics? Biomed Res Int. 2020;2020:4389089. [DOI:10.1155/2020/4389089] [PMID] []
31. Suryawanshi RK, Koganti R, Agelidis A, Patil CD, Shukla D. Dysregulation of Cell Signaling by SARS-CoV-2. Trends Microbiol. 2021;29(3):224-237. [DOI:10.1016/j.tim.2020.12.007] [PMID] []
32. Rizwan T, Kothidar A, Meghwani H, Sharma V, Shobhawat R, Saini R, et al. Comparative analysis of SARS-CoV-2 envelope viroporin mutations from COVID-19 deceased and surviving patients revealed implications on its ion-channel activities and correlation with patient mortality. J Biomol Struct Dyn. 2022;40(20):10454-10469. [DOI:10.1080/07391102.2021.1944319] [PMID]
33. Alam I, Kamau AA, Kulmanov M, Jaremko Ł, Arold ST, Pain A, et al. Functional Pangenome Analysis Shows Key Features of E Protein Are Preserved in SARS and SARS-CoV-2. Front Cell Infect Microbiol. 2020;10:405. [DOI:10.3389/fcimb.2020.00405] [PMID] []
34. Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol. 2020;27(12):1202-1208. [DOI:10.1038/s41594-020-00536-8] [PMID] []
35. Chan KK, Tan TJC, Narayanan KK, Procko E. An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants. Sci Adv. 2021;7(8):eabf1738. [DOI:10.1126/sciadv.abf1738] [PMID] []
36. Bandoy DJDR, Weimer BC. Analysis of SARS-CoV-2 genomic epidemiology reveals disease transmission coupled to variant emergence and allelic variation. Sci Rep. 2021;11(1):7380. [DOI:10.1038/s41598-021-86265-4] [PMID] []
37. Caohuy H, Eidelman O, Chen T, Mungunsukh O, Yang Q, Walton NI, et al. Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by the SARS-CoV-2 Spike protein. Sci Rep. 2024;14(1):16895. [DOI:10.1038/s41598-024-66473-4] [PMID] []
38. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010;8:8. [DOI:10.1186/1478-811X-8-8] [PMID] []
39. Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, et al. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct. 2021;16(1):15. [DOI:10.1186/s13062-021-00303-9] [PMID] []
40. Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 Envelope, Membrane, Nucleocapsid, and Spike Structural Proteins from the Beginning of the Pandemic to September 2020: A Global and Regional Approach by Epidemiological Week. Viruses. 2021;13(2):243. [DOI:10.3390/v13020243] [PMID] []
41. Li S, Wang J, Dai X, Li C, Li T, Chen L. The PDZ Domain of the E Protein in SARS-CoV Induces Carcinogenesis and Poor Prognosis in LUAD. Microbes Infect. 2024; 22:105381. [DOI:10.1016/j.micinf.2024.105381] [PMID]
42. Schoeman D, Cloete R, Fielding BC. Comparative studies of the seven human coronavirus envelope proteins using topology prediction and molecular modelling to understand their pathogenicity. bioRxiv. 2021. 2021.03.08.434384; [DOI:10.1101/2021.03.08.434384]
43. Toto A, Ma S, Malagrinò F, Visconti L, Pagano L, Stromgaard K, Gianni S. Comparing the binding properties of peptides mimicking the Envelope protein of SARS-CoV and SARS-CoV-2 to the PDZ domain of the tight junction-associated PALS1 protein. Protein Sci. 2020;29(10):2038-2042. [DOI:10.1002/pro.3936] [PMID] []
44. Chai J, Cai Y, Pang C, Wang L, McSweeney S, Shanklin J, Liu Q. Structural basis for SARS-CoV-2 envelope protein recognition of human cell junction protein PALS1. Nat Commun. 2021;12(1):3433. [DOI:10.1038/s41467-021-23533-x] [PMID] []
45. Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, et al. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. MBio. 2018; 14(6):e0248523. [DOI:10.1128/mbio.02485-23] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb