Volume 13, Issue 1 (Vol.13 No.1 Apr 2024)                   rbmb.net 2024, 13(1): 114-123 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmed A Q, Mohammed N J, Zefenkey Z F, Mamand S F, Hassannejad S, Hassan A O et al . Investigate Freshwater Algae Extract's Efficacy in Treating Diabetes Ulcers and Its Anti-Staphylococcal Properties. rbmb.net 2024; 13 (1) :114-123
URL: http://rbmb.net/article-1-1390-en.html
Department of Medical Laboratory Science, College of Science, Knowledge University, Erbil 44001, Iraq.
Abstract:   (282 Views)
Background: Infection of diabetic foot ulcer is very common and leads in 20% of cases to amputation. Antibiotic-resistant Staphylococcus aureus is the main cause of severe infection. Antibiotic resistance is a major challenge to the global health system. This work aimed to investigate the antibacterial efficacy of some algae extracts against Staphylococcus aureus isolated from diabetic foot ulcers.

Methods: freshwater river samples were collected to isolate the algae, and PCR was used for identification. The ethanol, water, and ethyl acetate extract of these algae were prepared and analyzed using high-performance liquid chromatography-mass spectrometry to determine the key components that have antibacterial properties. The antibacterial activity of these extracts against S. aureus was determined by broth dilution and well diffusion methods.

Results: Chlorella vulgaris and Anabaena flos-aquae were isolated from freshwater river and identified by PCR. Anabaena flos-aquae has a greater antibacterial efficacy against Staphylococcus aureus in comparison to Chlorella vulgaris, and the ethanolic extract demonstrated superior outcomes compared to the aqueous and ethyl acetate extracts. The MS spectrum of both algae had a very similar pattern, but the frequency of detected peaks was different

Conclusion: Ethanolic extract of A. flos-aquae and Chlorella vulgaris can be suggested to treat and control diabetic foot ulcer infection caused by S. aureus. Further studies are required to explore the full potential of these algae safely and extensively.

 

Full-Text [PDF 329 kb]   (90 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2024/05/10 | Accepted: 2024/08/25 | Published: 2024/10/22

References
1. Niknam N, Nikooei S, Ghasemi H, et al. Circulating Levels of HOTAIR- lncRNA Are Associated with Disease Progression and Clinical Parameters in Type 2 Diabetes Patients. Rep Biochem Mol Biol. 2023;12(3):448-457.
2. Yousif Hussin Alimam H, Abdelateif Hussein W, Ibrahim S, et al. Blood Glucose, HbA1c Level, and its Correlation with VEGF-A (+405G/C) Polymorphism as Biomarker Predicts the Risk of Retinopathy and Nephropathy in Type 2 Diabetic Patients. Rep Biochem Mol Biol. 2022;11(3):421-429. [DOI:10.52547/rbmb.11.3.421] [PMID] []
3. Mesbah Mohamed M, Ahmed Rashed L, Ahmed El-Boghdady N, Mohamed Said M. Bone Marrow-Derived Mesenchymal Stem Cells and Pioglitazone or Exendin-4 Synergistically Improve Insulin Resistance via Multiple Modulatory Mechanisms in High-Fat Diet/Streptozotocin-Induced Diabetes in Rats. Rep Biochem Mol Biol. 2023;12(1):42-58.
4. Afonso AC, Oliveira D, Saavedra MJ, Borges A, Simões M. Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. Int J Mol Sci. 2021;22(15):8278. [DOI:10.3390/ijms22158278] [PMID] []
5. Akkus G, Sert M. Diabetic foot ulcers: A devastating complication of diabetes mellitus continues non-stop in spite of new medical treatment modalities. World J Diabetes. 2022;13(12):1106-1121 [DOI:10.4239/wjd.v13.i12.1106] [PMID] []
6. Deng H, Li B, Shen Q, et al. Mechanisms of diabetic foot ulceration: A review. J Diabetes. 2023;15(4):299-312. [DOI:10.1111/1753-0407.13372] [PMID] []
7. Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel). 2023;16(11):1615. [DOI:10.3390/ph16111615] [PMID] []
8. Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, et al. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol. 2021;12:625597. [DOI:10.3389/fimmu.2021.625597] [PMID] []
9. Pouget C, Dunyach-Remy C, Pantel A, Schuldiner S, Sotto A, Lavigne JP. Biofilms in Diabetic Foot Ulcers: Significance and Clinical Relevance. Microorganisms. 2020;8(10):1580. [DOI:10.3390/microorganisms8101580] [PMID] []
10. Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. Biomed Res Int. 2013;2013:915436. [DOI:10.1155/2013/915436] [PMID] []
11. Duraipandiyan V, Ayyanar M, Ignacimuthu S. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement Altern Med. 2006;6:35. [DOI:10.1186/1472-6882-6-35] [PMID] []
12. Frazzini S, Scaglia E, Dell'Anno M, Reggi S, Panseri S, Giromini C, et al. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An In Vitro Study. Antioxidants (Basel). 2022;11(5):992. [DOI:10.3390/antiox11050992] [PMID] []
13. Shaima AF, Mohd Yasin NH, Ibrahim N, Takriff MS, Gunasekaran D, Ismaeel MYY. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J Biol Sci. 2022;29(2):1043-1052. [DOI:10.1016/j.sjbs.2021.09.069] [PMID] []
14. Mimouni V, Ulmann L, Pasquet V, Mathieu M, Picot L, Bougaran G, et al. The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr Pharm Biotechnol. 2012;13(15):2733-50. [DOI:10.2174/138920112804724828] [PMID]
15. Coulombier N, Jauffrais T, Lebouvier N. Antioxidant Compounds from Microalgae: A Review. Mar Drugs. 2021;19(10):549. [DOI:10.3390/md19100549] [PMID] []
16. John DM, Guiry MD, Wilbraham J, Krokowski J. The 2011 edition of "The Freshwater Algal Flora of the British Isles": additions, corrections, nomenclatural and taxonomic changes. Applied Phycology. 2022;3(1):36-71. [DOI:10.1080/26388081.2022.2031295]
17. Abou-Shanab RA, El-Dalatony MM, El-Sheekh MM, Ji MK, Salama ES, Kabra AN, Jeon BH. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol Bioprocess Eng. 2014;19:510-8. [DOI:10.1007/s12257-013-0485-z]
18. Sonnenberg R, Nolte AW, Tautz D. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front Zool. 2007;4(6):1-12. [DOI:10.1186/1742-9994-4-6] [PMID] []
19. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-402. [DOI:10.1093/nar/25.17.3389] [PMID] []
20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-9. [DOI:10.1093/molbev/msr121] [PMID] []
21. Gaur P, Hada V, Rath RS, Mohanty A, Singh P, Rukadikar A. Interpretation of Antimicrobial Susceptibility Testing Using European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) Breakpoints: Analysis of Agreement. Cureus. 2023;15(3):e36977. [DOI:10.7759/cureus.36977]
22. Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. Biomed Res Int. 2013;2013:915436. [DOI:10.1155/2013/915436] [PMID] []
23. Anetakis C, Mitka S, Chatzidimitriou M, Anagnostopoulos K, Eleftheriou P, Lialiaris T. Vitamin D Status in Osteoporotic and Diabetic Patients and Athletic Healthy Individuals from Northern Greece. Rep Biochem Mol Biol. 2023;11(4):565-576. [DOI:10.52547/rbmb.11.4.565] [PMID] []
24. Pradhan B, Patra S, Dash SR, Nayak R, Behera C, Jena M. Evaluation of the anti-bacterial activity of methanolic extract of Chlorella vulgaris Beyerinck [Beijerinck] with special reference to antioxidant modulation. Futur J Pharm Sci. 2021;7 (17). [DOI:10.1186/s43094-020-00172-5]
25. Sansone F, Esposito T, Mencherini T, Del Prete F, Cannoniere AL, Aquino RP. Exploring microencapsulation potential: Multicomponent spray dried delivery systems for improvement of Chlorella vulgaris extract preservation and solubility. Powder Technology. 2023;429:118882. [DOI:10.1016/j.powtec.2023.118882]
26. Barghchi H, Dehnavi Z, Nattagh-Eshtivani E, Alwaily ER, Almulla AF, Kareem AK, et al. The effects of Chlorella vulgaris on cardiovascular risk factors: A comprehensive review on putative molecular mechanisms. Biomed Pharmacother. 2023;162:114624. [DOI:10.1016/j.biopha.2023.114624] [PMID]
27. Panahi Y, Ghamarchehreh ME, Beiraghdar F, Zare R, Jalalian HR, Sahebkar A. Investigation of the effects of Chlorella vulgaris supplementation in patients with non-alcoholic fatty liver disease: a randomized clinical trial. Hepatogastroenterology. 2012;59(119):2099-2103.
28. Hosseini AM, Keshavarz SA, Nasli-Esfahani E, Amiri F, Janani L. The effects of Chlorella supplementation on glycemic control, lipid profile and anthropometric measures on patients with type 2 diabetes mellitus. Eur J Nutr. 2021;60(6):3131-3141. [DOI:10.1007/s00394-021-02492-5] [PMID]
29. Ebrahimi-Mameghani M, Sadeghi Z, Abbasalizad Farhangi M, Vaghef-Mehrabany E, Aliashrafi S. Glucose homeostasis, insulin resistance and inflammatory biomarkers in patients with non-alcoholic fatty liver disease: Beneficial effects of supplementation with microalgae Chlorella vulgaris: A double-blind placebo-controlled randomized clinical trial. Clin Nutr. 2017;36(4):1001-1006. [DOI:10.1016/j.clnu.2016.07.004] [PMID]
30. Esteves-Ferreira AA, Cavalcanti JHF, Vaz MGMV, Alvarenga LV, Nunes-Nesi A, Araújo WL. Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet Mol Biol. 2017;40(1 suppl 1):261-275. [DOI:10.1590/1678-4685-gmb-2016-0050] [PMID] []
31. Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev. 2002;66(1):94-121 [DOI:10.1128/MMBR.66.1.94-121.2002] [PMID] []
32. Bruno P, Peña S, Just-Baringo X, Albericio F, Álvarez M. Total synthesis of aeruginazole A. Org Lett. 2011;13(17):4648-51. [DOI:10.1021/ol2018592] [PMID]
33. Mo S, Krunic A, Santarsiero BD, Franzblau SG, Orjala J. Hapalindole-related alkaloids from the cultured cyanobacterium Fischerella ambigua. Phytochemistry. 2010;71(17-18):2116-23. [DOI:10.1016/j.phytochem.2010.09.004] [PMID] []
34. Kukla DL, Canchola J, Mills JJ. Synthesis of the Cyanobacterial Antibiotics Anaephenes A and B. J Nat Prod. 2020;83(6):2036-2040. [DOI:10.1021/acs.jnatprod.0c00279] [PMID]
35. Brumley D, Spencer KA, Gunasekera SP, Sauvage T, Biggs J, Paul VJ, Luesch H. Isolation and Characterization of Anaephenes A-C, Alkylphenols from a Filamentous Cyanobacterium ( Hormoscilla sp., Oscillatoriales). J Nat Prod. 2018;81(12):2716-2721. [DOI:10.1021/acs.jnatprod.8b00650] [PMID] []
36. Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, Dunn PJ. CHEM21 selection guide of classical-and less classical-solvents. Green Chem. 2016;18(1):288-96. [DOI:10.1039/C5GC01008J]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb