Volume 13, Issue 2 (Vol.13 No.2 Jul 2024)                   rbmb.net 2024, 13(2): 243-253 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saadat S, Noureddini M, Maleki B, Ehtesham N, Farrokhian A, Verdi J, et al . In Vitro Differentiation of Endometrium Stem Cells into Cardiomyocytes: The Putative Effect of miR-17-5p, miR-26b-5p, miR-32-5p, and SMAD6. rbmb.net 2024; 13 (2) :243-253
URL: http://rbmb.net/article-1-1395-en.html
Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran & Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
Abstract:   (550 Views)
Background: The important role of SMAD6 and several microRNAs (miRNAs), such as miR-17-5p, miR-26b-5p, and miR-32-5p, has been demonstrated in controlling the proliferation and differentiation of cardiomyocytes (CMs). Hence, this study was designed to assess the role of these regulatory factors in cardiac cell generation from human endometrium-derived mesenchymal stem cells (hEMSCs).

Methods: To induce transdifferentiation into CMs, hEMSCs were treated with a cardiac-inducing medium containing 5-azacytidine and bFGF for 30 days. Immunofluorescence staining and qRT-PCR, respectively, were used to measure the protein levels of SMAD6 and the mRNA expression of SMAD6 and the three miRNAs every six days.

Results: Our findings demonstrated the mesenchymal stem cell properties of hEMSCs and their ability to differentiate into various types of mesenchymal stem cells. The differentiated hEMSCs exhibited morphological features resembling CMs. During the induction period, the number of positive cells for SMAD6 protein and the expression level of miR-26b-5p increased and peaking on days 24 and 30, while the expression levels of miR-17-5p and miR-32-5p decreased. The Pearson correlation coefficients revealed that SMAD6 level is inversely correlated with miR-17-5p and miR-32-5p and directly correlated with miR-26b-5p.

Conclusion: Our results indicate that miR-17-5p, miR-26b-5p, miR-32-5p, and SMAD6 are potentially involved in the molecular signaling pathways of transdifferentiation of hEMSCs to CMs.
Full-Text [PDF 357 kb]   (152 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2024/05/21 | Accepted: 2024/10/6 | Published: 2025/01/4

References
1. Sadabadi F, Gholoobi A, Heidari-Bakavol A, Mouhebati M, Javandoost A, Asadi Z, et al. Decreased Threshold of Fasting Serum Glucose for Cardiovascular Events: MASHAD Cohort Study. Rep Biochem Mol Biol. 2020;9(1):64-70. [DOI:10.29252/rbmb.9.1.64] [PMID] []
2. Deshmukh V, Wang J, Martin JF. Leading progress in heart regeneration and repair. Curr Opin Cell Biol. 2019;61:79-85. [DOI:10.1016/j.ceb.2019.07.005] [PMID] []
3. Bartolucci J, Verdugo FJ, González PL, Larrea RE, Abarzua E, Goset C, et al. Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res. 2017;121(10):1192-1204. [DOI:10.1161/CIRCRESAHA.117.310712] [PMID] []
4. Guo Y, Pu WT. Cardiomyocyte Maturation: New Phase in Development. Circ Res. 2020 Apr 10;126(8):1086-1106. [DOI:10.1161/CIRCRESAHA.119.315862] [PMID] []
5. Liu Y, Liu T, Han J, Yang Z, Xue X, Jiang H, Wang H. Advanced age impairs cardioprotective function of mesenchymal stem cell transplantation from patients to myocardially infarcted rats. Cardiology. 2014;128(2):209-19. [DOI:10.1159/000360393] [PMID]
6. He L, Chen X. Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Adv Healthc Mater. 2020;9(22):e2001175. [DOI:10.1002/adhm.202001175] [PMID]
7. Akyash F, Javidpou M, Yazd EF, Golzadeh J, Hajizadeh-Tafti F, Aflatoonian R, Aflatoonian B. Characteristics of the human endometrial regeneration cells as a potential source for future stem cell-based therapies: A lab resources study. Int J Reprod Biomed. 2020;18(11):943-950. [DOI:10.18502/ijrm.v13i11.7961] [PMID] []
8. Fan X, He S, Song H, Yin W, Zhang J, Peng Z, et al. Human endometrium-derived stem cell improves cardiac function after myocardial ischemic injury by enhancing angiogenesis and myocardial metabolism. Stem Cell Res Ther. 2021;12(1):344. [DOI:10.1186/s13287-021-02423-5] [PMID] []
9. Simoni M, Taylor HS. Therapeutic strategies involving uterine stem cells in reproductive medicine. Curr Opin Obstet Gynecol. 2018;30(3):209-216. [DOI:10.1097/GCO.0000000000000457] [PMID]
10. Jha R, Li D, Wu Q, Ferguson KE, Forghani P, Gibson GC, Xu C. A long non-coding RNA GATA6-AS1 adjacent to GATA6 is required for cardiomyocyte differentiation from human pluripotent stem cells. FASEB J. 2020;34(11):14336-14352. [DOI:10.1096/fj.202000206R] [PMID] []
11. Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol. 2021;118:94-106. [DOI:10.1016/j.semcdb.2021.06.002] [PMID] []
12. Sorensen DW, van Berlo JH. The Role of TGF-β Signaling in Cardiomyocyte Proliferation. Curr Heart Fail Rep. 2020;17(5):225-233. [DOI:10.1007/s11897-020-00470-2] [PMID] []
13. Li J, Hua Y, Miyagawa S, Zhang J, Li L, Liu L, Sawa Y. hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery. Int J Mol Sci. 2020;21(23):8893. [DOI:10.3390/ijms21238893] [PMID] []
14. de Pater E, Ciampricotti M, Priller F, Veerkamp J, Strate I, Smith K, et al. Bmp signaling exerts opposite effects on cardiac differentiation. Circ Res. 2012;110(4):578-87. [DOI:10.1161/CIRCRESAHA.111.261172] [PMID] []
15. Lauschke K, Volpini L, Liu Y, Vinggaard AM, Hall VJ. A Comparative Assessment of Marker Expression Between Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells and the Developing Pig Heart. Stem Cells Dev. 2021;30(7):374-385. [DOI:10.1089/scd.2020.0184] [PMID]
16. Azizidoost S, Farzaneh M. MicroRNAs as a Novel Player for Differentiation of Mesenchymal Stem Cells into Cardiomyocytes. Curr Stem Cell Res Ther. 2023;18(1):27-34. [DOI:10.2174/1574888X17666220422094150] [PMID]
17. Zhao R, Watt AJ, Battle MA, Li J, Bondow BJ, Duncan SA. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol. 2008;317(2):614-9. [DOI:10.1016/j.ydbio.2008.03.013] [PMID] []
18. Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood). 2004 Jul;229(7):623-31. [DOI:10.1177/153537020422900706] [PMID]
19. Maleki B, Noureddini M, Saadat S, Verdi J, Farrokhian A, Ghanbarian H, et al. Effect of miR-18a-5p, miR-19a-3p, and miR-20a-5p on In Vitro Cardiomyocyte Differentiation of Human Endometrium Tissue-Derived Stem Cells Through Regulation of Smad4 Expression. Rep Biochem Mol Biol. 2023;12(1):136-146.
20. Sadat S, Alani B, Noureddini M, Maleki B; Farrokhian AR, Verdi J, Ghanbarian H. Evaluation of miR 26b 5p changes during differentiation of human endometrial stem cells into cardiomyocytes. Feyz Med Sci J. 2022; 26(2), 118-127.
21. Cao Y, Zheng M, Sewani MA, Wang J. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res. 2024;116(1):e2273. [DOI:10.1002/bdr2.2273] [PMID] []
22. Qi J, Luo X, Ma Z, Zhang B, Li S, Zhang J. Downregulation of miR-26b-5p, miR-204-5p, and miR-497-3p Expression Facilitates Exercise-Induced Physiological Cardiac Hypertrophy by Augmenting Autophagy in Rats. Front Genet. 2020;11:78. [DOI:10.3389/fgene.2020.00078] [PMID] []
23. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20(1):21. [DOI:10.1186/s12867-019-0135-x] [PMID] []
24. Li X, Wang J, Wu C, Lu X, Huang J. MicroRNAs involved in the TGF-β signaling pathway in atherosclerosis. Biomed Pharmacother. 2022;146:112499. [DOI:10.1016/j.biopha.2021.112499] [PMID]
25. Marquez ME, Sernbo S, Payque E, Uria R, Tosar JP, Querol J, et al. TGF-β/SMAD Pathway Is Modulated by miR-26b-5p: Another Piece in the Puzzle of Chronic Lymphocytic Leukemia Progression. Cancers (Basel). 2022;14(7):1676. [DOI:10.3390/cancers14071676] [PMID] []
26. Qu Y, Zhang H, Duan J, Liu R, Deng T, Bai M, et al. MiR-17-5p regulates cell proliferation and migration by targeting transforming growth factor-β receptor 2 in gastric cancer. Oncotarget. 2016;7(22):33286-96. [DOI:10.18632/oncotarget.8946] [PMID] []
27. Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I. Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A. 2006;103(52):19812-7. [DOI:10.1073/pnas.0605768103] [PMID] []
28. Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(23):9685-90. [DOI:10.1073/pnas.0702859104] [PMID] []
29. Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008;26(7):1695-704. [DOI:10.1634/stemcells.2007-0826] [PMID]
30. Wang T, Xu Z, Jiang W, Ma A. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol. 2006;109(1):74-81. [DOI:10.1016/j.ijcard.2005.05.072] [PMID]
31. Jiang S, Zhang S. Differentiation of cardiomyocytes from amniotic fluid derived mesenchymal stem cells by combined induction with transforming growth factor β1 and 5 azacytidine. Mol Med Rep. 2017;16(5):5887-5893. [DOI:10.3892/mmr.2017.7373] [PMID] []
32. Shi S, Wu X, Wang X, Hao W, Miao H, Zhen L, Nie S. Differentiation of Bone Marrow Mesenchymal Stem Cells to Cardiomyocyte-Like Cells Is Regulated by the Combined Low Dose Treatment of Transforming Growth Factor-β1 and 5-Azacytidine. Stem Cells Int. 2016;2016:3816256. [DOI:10.1155/2016/3816256] [PMID] []
33. Xing Y, Lv A, Wang L, Yan X. The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem. 2012;360(1-2):279-87. [DOI:10.1007/s11010-011-1067-z] [PMID]
34. Rahimi M, Zarnani AH, Mohseni-Kouchesfehani H, Soltanghoraei H, Akhondi MM, Kazemnejad S. Comparative evaluation of cardiac markers in differentiated cells from menstrual blood and bone marrow-derived stem cells in vitro. Mol Biotechnol. 2014;56(12):1151-62. [DOI:10.1007/s12033-014-9795-4] [PMID]
35. Rahimi M, Zarnani AH, Mobini S, Khorasani S, Darzi M, Kazemnejad S. Comparative effectiveness of three-dimensional scaffold, differentiation media and co-culture with native cardiomyocytes to trigger in vitro cardiogenic differentiation of menstrual blood and bone marrow stem cells. Biologicals. 2018;54:13-21. [DOI:10.1016/j.biologicals.2018.05.003] [PMID]
36. Hasani S, Javeri A, Asadi A, Fakhr Taha M. Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid. Cell J. 2020;22(3):273-282.
37. Shen X, Pan B, Zhou H, Liu L, Lv T, Zhu J, et al. Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway. J Biomed Sci. 2017;24(1):29. [DOI:10.1186/s12929-017-0337-9] [PMID] []
38. Luo T, Yang X, Sun Y, Huang X, Zou L, Liu J. Effect of MicroRNA-20a on Osteogenic Differentiation of Human Adipose Tissue-Derived Stem Cells. Cells Tissues Organs. 2019;208(3-4):148-157. [DOI:10.1159/000506304] [PMID]
39. Zhang JF, Fu WM, He ML, Xie WD, Lv Q, Wan G, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol. 2011;8(5):829-38. [DOI:10.4161/rna.8.5.16043] [PMID]
40. Ai F, Zhang Y, Peng B. miR-20a regulates proliferation, differentiation and apoptosis in P19 cell model of cardiac differentiation by targeting Smoothened. Biol Open. 2016;5(9):1260-5. [DOI:10.1242/bio.019182] [PMID] []
41. Ebrahimi-Barough S, Kouchesfehani HM, Ai J, Mahmoodinia M, Tavakol S, Massumi M. Programming of human endometrial- derived stromal cells (EnSCs) into pre-oligodendrocyte cells by overexpression of miR-219. Neurosci Lett. 2013;537:65-70. [DOI:10.1016/j.neulet.2013.01.022] [PMID]
42. Ebrahimi-Barough S, Massumi M, Kouchesfahani HM, Ai J. Derivation of pre-oligodendrocytes from human endometrial stromal cells by using overexpression of microRNA 338. J Mol Neurosci. 2013;51(2):337-43. [DOI:10.1007/s12031-013-0101-x] [PMID]
43. Markmee R, Aungsuchawan S, Narakornsak S, Tancharoen W, Bumrungkit K, Pangchaidee N, et al. Differentiation of mesenchymal stem cells from human amniotic fluid to cardiomyocyte like cells. Mol Med Rep. 2017;16(5):6068-6076. [DOI:10.3892/mmr.2017.7333] [PMID] []
44. Zhang Y, Chu Y, Shen W, Dou Z. Effect of 5-azacytidine induction duration on differentiation of human first-trimester fetal mesenchymal stem cells towards cardiomyocyte-like cells. Interact Cardiovasc Thorac Surg. 2009;9(6):943-6. [DOI:10.1510/icvts.2009.211490] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb