Volume 13, Issue 3 (Vol.13 No.3 Oct 2024)                   rbmb.net 2024, 13(3): 322-328 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pradana A, Sari D K, Rusda M, Tarigan A P, Wiyono W H, Soeroso N N, et al . Protective Effects of Probiotics Against Systemic Inflammation in Mice Model with Chronic Obstructive Pulmonary Disease Induced by Cigarette-smoke. rbmb.net 2024; 13 (3) :322-328
URL: http://rbmb.net/article-1-1427-en.html
Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia & Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
Abstract:   (586 Views)
Background: Systemic inflammation is one of hallmarks in chronic obstructive pulmonary disease (COPD), contributing to high morbidity and mortality due to elevated levels of interleukin-6 (IL-6) and reduced level of interleukin-10 (IL-10). Probiotics have the potential to reduce systemic inflammation through the gut-lung axis. This study aims to assess the effect of probiotics compared with an inhaled bronchodilator on serum IL-6 and IL-10 levels in mice model of COPD.
Methods: This was an in vivo experimental study with a post-test only control group design. Thirty C57BL/6 mice were randomized into five groups; NC (healthy mice), PC (COPD induced mice); T1 (COPD mice treated with a bronchodilator), T2 (COPD mice treated with probiotics) and T3 (COPD mice treated with both a bronchodilator and probiotics). COPD was induced for 12 weeks, followed by a 6-week treatment period. After completing the treatment, serum IL-6 and IL-10 levels were measured using the enzyme-linked immunosorbent assay (ELISA).
Results: The IL-6 levels in T2 group were reduced to levels comparable to the negative control group (13.5 vs 12.0 pg/ml respectively, p=0.84). The IL-10 levels were higher in T2 group compared to T1 group, however; this difference was not statistically significant (181.4 vs 155.0 respectively, p>0.05).
Conclusion: In mice model of COPD, probiotics have been shown to lower IL-6 levels and, to a lesser extent, increased IL-10. As a result, probiotics may have a protective effect against systemic inflammation.
Full-Text [PDF 971 kb]   (201 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/07/9 | Accepted: 2024/12/25 | Published: 2025/04/12

References
1. López-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology. 2016;21(1):14-23. [DOI:10.1111/resp.12660] [PMID]
2. Adeloye D, Song P, Zhu Y, Campbell H, Sheikh A, Rudan I; NIHR RESPIRE Global Respiratory Health Unit. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med. 2022;10(5):447-458. [DOI:10.1016/S2213-2600(21)00511-7] [PMID]
3. Miravitlles M, Ribera A. Understanding the impact of symptoms on the burden of COPD. Respir Res. 2017;18(1):67. [DOI:10.1186/s12931-017-0548-3] [PMID] []
4. Iheanacho I, Zhang S, King D, Rizzo M, Ismaila AS. Economic Burden of Chronic Obstructive Pulmonary Disease (COPD): A Systematic Literature Review. Int J Chron Obstruct Pulmon Dis. 2020;15:439-460. [DOI:10.2147/COPD.S234942] [PMID] []
5. Agusti A, Beasley R, Celli BR, Criner G, Halpin D, Varela MVL, et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur Respir J. 2023;61(4):2300239. [DOI:10.1183/13993003.00239-2023] [PMID] []
6. Zhang Y, Bunjhoo H, Xiong W, Xu Y, Yang D. Association between C-reactive protein concentration and chronic obstructive pulmonary disease: a systematic review and meta-analysis. J Int Med Res. 2012;40(5):1629-35. [DOI:10.1177/030006051204000501] [PMID]
7. Zou Y, Chen X, Liu J, Zhou DB, Kuang X, Xiao J, et al. Serum IL-1β and IL-17 levels in patients with COPD: associations with clinical parameters. Int J Chron Obstruct Pulmon Dis. 2017;12:1247-1254. [DOI:10.2147/COPD.S131877] [PMID] []
8. Ye C, Yuan L, Wu K, Shen B, Zhu C. Association between systemic immune-inflammation index and chronic obstructive pulmonary disease: a population-based study. BMC Pulm Med. 2023;23(1):295. [DOI:10.1186/s12890-023-02583-5] [PMID] []
9. Obling N, Backer V, Hurst JR, Bodtger U. Nasal and systemic inflammation in Chronic Obstructive Pulmonary Disease (COPD). Respir Med. 2022;195:106774. [DOI:10.1016/j.rmed.2022.106774] [PMID]
10. Tsutsumi T, Nakano D, Kawaguchi M, Hashida R, Yoshinaga S, Takahashi H, et al. MAFLD associated with COPD via systemic inflammation independent of aging and smoking in men. Diabetol Metab Syndr. 2022;14(1):115. [DOI:10.1186/s13098-022-00887-w] [PMID] []
11. Lin B, Bai L, Wang S, Lin H. The Association of Systemic Interleukin 6 and Interleukin 10 Levels with Sarcopenia in Elderly Patients with Chronic Obstructive Pulmonary Disease. Int J Gen Med. 2021;14:5893-5902. [DOI:10.2147/IJGM.S321229] [PMID] []
12. Asgari F, Falak R, Teimourian S, Pourakbari B, Ebrahimnezhad S, Shekarabi M. Effects of Oral Probiotic Feeding on Toll-Like Receptor Gene Expression of the Chicken's Cecal Tonsil. Rep Biochem Mol Biol. 2018;6(2):151-157.
13. Anand S, Mande SS. Diet, Microbiota and Gut-Lung Connection. Front Microbiol. 2018;9:2147. [DOI:10.3389/fmicb.2018.02147] [PMID] []
14. Zhang D, Li S, Wang N, Tan HY, Zhang Z, Feng Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front Microbiol. 2020;11:301. [DOI:10.3389/fmicb.2020.00301] [PMID] []
15. Jiang M, Li Z, Zhang F, Li Z, Xu D, Jing J, et al. Butyrate inhibits iILC2-mediated lung inflammation via lung-gut axis in chronic obstructive pulmonary disease (COPD). BMC Pulm Med. 2023;23(1):163. [DOI:10.1186/s12890-023-02438-z] [PMID] []
16. Kotlyarov S. Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. Int J Mol Sci. 2022;23(9):4768. [DOI:10.3390/ijms23094768] [PMID] []
17. He ZH, Chen P, Chen Y, He SD, Ye JR, Zhang HL, Cao J. Comparison between cigarette smoke-induced emphysema and cigarette smoke extract-induced emphysema. Tob Induc Dis. 2015;13(1):6. [DOI:10.1186/s12971-015-0033-z] [PMID] []
18. Liang GB, He ZH. Animal models of emphysema. Chin Med J (Engl). 2019;132(20):2465-2475. [DOI:10.1097/CM9.0000000000000469] [PMID] []
19. Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov. 2014;9(6):629-45. [DOI:10.1517/17460441.2014.909805] [PMID]
20. Darbandi A, Asadi A, Ghanavati R, Afifirad R, Darb Emamie A, Kakanj M, Talebi M. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: Systemic review 2010-20. Int J Infect Dis. 2021;105:91-104. [DOI:10.1016/j.ijid.2021.02.011] [PMID] []
21. Huang H, Huang X, Zeng K, Deng F, Lin C, Huang W. Interleukin-6 is a Strong Predictor of the Frequency of COPD Exacerbation Within 1 Year. Int J Chron Obstruct Pulmon Dis. 2021;16:2945-2951. [DOI:10.2147/COPD.S332505] [PMID] []
22. Hussein FGM, Mohammed RS, Khattab RA, Al-Sharawy LA. Serum interleukin-6 in chronic obstructive pulmonary disease patients and its relation to severity and acute exacerbation. Egypt J Bronchol . 2022;16 (1):10. [DOI:10.1186/s43168-022-00115-z]
23. Aslani MR, Ghazaei Z, Ghobadi H. Correlation of serum fatty acid binding protein-4 and interleukin-6 with airflow limitation and quality of life in stable and acute exacerbation of COPD. Turk J Med Sci. 2020;50(2):337-345. [DOI:10.3906/sag-1909-9] [PMID] []
24. Silva BSA, Lira FS, Ramos D, Uzeloto JS, Rossi FE, Freire APCF, et al. Severity of COPD and its relationship with IL-10. Cytokine. 2018;106:95-100. [DOI:10.1016/j.cyto.2017.10.018] [PMID]
25. Rostami-Far Z, Rahmani K, Mansouri K, Khadem Erfan MB, Shaveisi-Zadeh F, Nikkhoo B. Genetic Regulation of Interleukin-6 and Interleukin-10 in COVID-19 Infection. Rep Biochem Mol Biol. 2023;12(2):284-293. [DOI:10.61186/rbmb.12.2.284] [PMID] []
26. Jiang S, Shan F, Zhang Y, Jiang L, Cheng Z. Increased serum IL-17 and decreased serum IL-10 and IL-35 levels correlate with the progression of COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:2483-2494. [DOI:10.2147/COPD.S167192] [PMID] []
27. Huang AX, Lu LW, Liu WJ, Huang M. Plasma Inflammatory Cytokine IL-4, IL-8, IL-10, and TNF-α Levels Correlate with Pulmonary Function in Patients with Asthma-Chronic Obstructive Pulmonary Disease (COPD) Overlap Syndrome. Med Sci Monit. 2016;22:2800-8. [DOI:10.12659/MSM.896458] [PMID] []
28. Carvalho JL, Miranda M, Fialho AK, Castro-Faria-Neto H, Anatriello E, Keller AC, Aimbire F. Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells. PLoS One. 2020;15(4):e0225560. [DOI:10.1371/journal.pone.0225560] [PMID] []
29. Vasconcelos JA, Mota AS, Olímpio F, Rosa PC, Damaceno-Rodrigues N, de Paula Vieira R, Taddei CR, Aimbire F. Lactobacillus rhamnosus Modulates Lung Inflammation and Mitigates Gut Dysbiosis in a Murine Model of Asthma-COPD Overlap Syndrome. Probiotics Antimicrob Proteins. 2023. [DOI:10.1007/s12602-023-10167-2] [PMID]
30. Liu T, Li J, Liu Y, Xiao N, Suo H, Xie K, et al. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation. 2012;35(5):1676-84. [DOI:10.1007/s10753-012-9484-z] [PMID]
31. Ohira H, Fujioka Y, Katagiri C, Mamoto R, Aoyama-Ishikawa M, Amako K, et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb. 2013;20(5):425-42. [DOI:10.5551/jat.15065] [PMID]
32. Siddiqui MT, Cresci GAM. The Immunomodulatory Functions of Butyrate. J Inflamm Res. 2021;14:6025-6041. [DOI:10.2147/JIR.S300989] [PMID] []
33. Varela-Trinidad GU, Domínguez-Díaz C, Solórzano-Castanedo K, Íñiguez-Gutiérrez L, Hernández-Flores TJ, Fafutis-Morris M. Probiotics: Protecting Our Health from the Gut. Microorganisms. 2022;10(7):1428. [DOI:10.3390/microorganisms10071428] [PMID] []
34. A. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol. 2014;20(42):15632-49. [DOI:10.3748/wjg.v20.i42.15632] [PMID] []
35. Mustika S, Effendi TO. Chronic Lung and Gastrointestinal Diseases: Take a Broader Perspective. J Resp.2022;8 (1):52-9. [DOI:10.20473/jr.v8-I.1.2022.52-59]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb