Volume 13, Issue 3 (Vol.13 No.3 Oct 2024)                   rbmb.net 2024, 13(3): 385-393 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Quasimi H, Wazib S, Azam Khan G, Iqbal Alam* M. HMGB1 Modulates Angiogenic Imbalance and Cardiovascular Complications in Preeclampsia through Decorin and VEGF Regulation. rbmb.net 2024; 13 (3) :385-393
URL: http://rbmb.net/article-1-1440-en.html
Department of Clinical Nutrition, College of Applied Medical Sciences, King Faisal University, Alhasa, KSA.
Abstract:   (334 Views)
Background: Preeclampsia (PE) is a serious multisystem disorder that ranks among the leading causes of maternal and neonatal morbidity and mortality. The condition is characterized by an angiogenic imbalance, which has adverse effects on fetal development and contributes to an increased risk of cardiovascular disease in the long term. This study aims to explore the connection between sterile inflammation mediated by HMGB1 and angiogenic imbalance in PE by examining key markers such as HMGB1, VEGF, Decorin, and TGF-β.

Methods: In an animal model of PE, we measured the levels of HMGB1, VEGF, Decorin, and TGF-β in plasma, placenta, and heart tissues using ELISA. Additionally, Decorin levels were assessed through immunofluorescence in trophoblasts.

Results: We found that levels of Decorin and TGF-β were significantly elevated in the plasma, placenta, and heart tissues of PE animals compared to non-pregnant and pregnant controls, whereas VEGF levels were reduced. Treatment with Glycyrrhizic acid (GA) restored the expression levels of these markers to more normalized values in the PE groups.

Conclusion: Our findings indicate that HMGB1 plays a critical role in preeclampsia by mediating the upregulation of anti-angiogenic factors like Decorin and the downregulation of angiogenic factors like VEGF. This study highlights a significant correlation between HMGB1 and Decorin in driving the angiogenic imbalance that contributes to the pathophysiology of PE.
Full-Text [PDF 381 kb]   (94 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/07/29 | Accepted: 2024/12/26 | Published: 2025/04/12

References
1. Yu H, Chen L, Du B. Necroptosis in the pathophysiology of preeclampsia. Cell Cycle. 2023;22(14-16):1713-1725. [DOI:10.1080/15384101.2023.2229138] [PMID] []
2. Zakeri S, Rahimi Z, Jalilian N, Vaisi-Raygani A, Rezvani A, Dastafkan Z. Aberrant Methylation of the SOD1 GENE, its Expression and Enzyme Activity in the Placenta of Patients with Preeclampsia. Rep Biochem Mol Biol. 2023;12(1):112-119. [DOI:10.61186/rbmb.12.1.112] [PMID] []
3. Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ. Vascular Dysfunction in Preeclampsia. Cells. 2021;10(11):3055. [DOI:10.3390/cells10113055] [PMID] []
4. Wang H, Zhang X, Liu C, Chen S, Liu X, Fan S. TAGLN2-Regulated Trophoblast Migration, Invasion and Fusion are Impaired in Preeclampsia. Front Cell Dev Biol. 2022;10:810633. [DOI:10.3389/fcell.2022.810633] [PMID] []
5. Dimitriadis E, Rolnik DL, Zhou W, Estrada-Gutierrez G, Koga K, Francisco RPV, et al. Pre-eclampsia. Nat Rev Dis Primers. 2023;9(1):8. https://doi.org/10.1038/s41572-023-00417-6 [DOI:10.1038/s41572-023-00451-4] [PMID]
6. Rana S, Burke SD, Karumanchi SA. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol. 2022;226(2S):S1019-S1034. [DOI:10.1016/j.ajog.2020.10.022] [PMID] []
7. Michalczyk M, Celewicz A, Celewicz M, Woźniakowska-Gondek P, Rzepka R. The Role of Inflammation in the Pathogenesis of Preeclampsia. Mediators Inflamm. 2020;2020:3864941. [DOI:10.1155/2020/3864941] [PMID] []
8. Tomimatsu T, Mimura K, Endo M, Kumasawa K, Kimura T. Pathophysiology of preeclampsia: an angiogenic imbalance and long-lasting systemic vascular dysfunction. Hypertens Res. 2017;40(4):305-310. [DOI:10.1038/hr.2016.152] [PMID]
9. Cornelis T, Odutayo A, Keunen J, Hladunewich M. The kidney in normal pregnancy and preeclampsia. Semin Nephrol. 2011;31(1):4-14. [DOI:10.1016/j.semnephrol.2010.10.002] [PMID]
10. Al-Kawaz HS, Yasser OM, Mousa MJ. A New Method to Estimate Inhibition Percentage of Endogenous Digitalis in Patients with Pre-eclampsia. Rep Biochem Mol Biol. 2022;11(1):138-145. [DOI:10.52547/rbmb.11.1.138] [PMID] []
11. Chen DB, Zheng J. Regulation of placental angiogenesis. Microcirculation. 2014;21(1):15-25. [DOI:10.1111/micc.12093] [PMID] []
12. Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules. 2020;10(6):953. [DOI:10.3390/biom10060953] [PMID] []
13. Lala PK, Nandi P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adh Migr. 2016;10(1-2):111-25. [DOI:10.1080/19336918.2015.1106669] [PMID] []
14. Zhou Y, Gan G. The levels of peripheral blood TNF-α, Decorin and neutrophils MAPK1 mRNA levels of patients with preeclampsia and their clinical significance. J Matern Fetal Neonatal Med. 2023;36(1):2183745. [DOI:10.1080/14767058.2023.2183745] [PMID]
15. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29(6):789-91. [DOI:10.1161/ATVBAHA.108.179663] [PMID]
16. Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia. Semin Nephrol. 2011;31(1):33-46. [DOI:10.1016/j.semnephrol.2010.10.004] [PMID] []
17. Quasimi H, Naaz S, Dhyani N, Bhagat S, Ansari M. Evaluation of Hemodynamics and Oxidative Stress in the Pathophysiology of L-NAME Induced Preeclampsia in Rats. 2022;5(12):75-84. [DOI:10.31080/ASMI.2022.05.1180]
18. Kuklina E V., Ayala C, Callaghan WM. Hypertensive disorders and severe obstetric morbidity in the united states. Obstetrics and Gynecology. 2009;113(6):1299-306. [DOI:10.1097/AOG.0b013e3181a45b25] [PMID]
19. Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia. Semin Nephrol. 2011;31(1):33-46. [DOI:10.1016/j.semnephrol.2010.10.004] [PMID] []
20. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123(24):2856-69. [DOI:10.1161/CIRCULATIONAHA.109.853127] [PMID] []
21. Staff AC, Fjeldstad HE, Fosheim IK, Moe K, Turowski G, Johnsen GM, et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S895-S906. [DOI:10.1016/j.ajog.2020.09.026] [PMID]
22. Lala PK, Nandi P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adh Migr. 2016;10(1-2):111-25. [DOI:10.1080/19336918.2015.1106669] [PMID] []
23. Khan GA, Girish GV, Lala N, Di Guglielmo GM, Lala PK. Decorin is a novel VEGFR-2-binding antagonist for the human extravillous trophoblast. Mol Endocrinol. 2011;25(8):1431-43. [DOI:10.1210/me.2010-0426] [PMID] []
24. Bdolah Y, Sukhatme VP, Karumanchi SA. Angiogenic imbalance in the pathophysiology of preeclampsia: newer insights. Semin Nephrol. 2004;24(6):548-56. [DOI:10.1016/j.semnephrol.2004.07.003] [PMID]
25. Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2):e003497. [DOI:10.1161/CIRCOUTCOMES.116.003497] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb