Volume 13, Issue 3 (Vol.13 No.3 Oct 2024)                   rbmb.net 2024, 13(3): 405-419 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saadi Ahmed S, Abbass N. Synthesis and Anticancer Activity of Polymer Nanocomposites with Moringa- Extracted CuO and Ag2O Nanoparticles. rbmb.net 2024; 13 (3) :405-419
URL: http://rbmb.net/article-1-1449-en.html
Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq.
Abstract:   (1759 Views)
Background: This study aimed to synthesize copper oxide (CuO) and silver oxide (Ag2O) nanoparticles using a green synthesis method involving moringa extract and incorporate them into polymer nanocomposites with polyacrolein. The objective was to evaluate their cytotoxicity against fibroblasts and glioblastoma cell lines.

Methods: The CuO and Ag2O nanoparticles were synthesized using moringa extract as a reducing agent. Nanocomposites were formed through a condensation reaction with polyacrolein. Characterization techniques included Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). Cytotoxicity was evaluated through in vitro assays using human dermal fibroblasts (HdFn) and A172 glioblastoma cells.

Results: AFM analysis showed nanoparticle sizes of 19.36 nm for Ag2O and 66.89 nm for CuO, while TEM images revealed nonhomogeneous spherical nanocomposites. FT-IR and XRD confirmed the successful incorporation of nanoparticles into the polymer matrix. TGA and DSC results demonstrated thermal stability and transitions of the nanocomposites. Cytotoxicity assays indicated significant inhibition of A172 glioblastoma cell proliferation with minimal impact on normal fibroblast cells, suggesting selective cytotoxicity.

Conclusion: The polymer nanocomposites incorporating moringa-extracted CuO and Ag2O nanoparticles exhibited promising selective cytotoxicity against glioblastoma cells, indicating their potential use as anticancer agents. Further studies on in vivo applications and long-term stability are warranted to advance their biomedical use.
Full-Text [PDF 2882 kb]   (128 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2024/08/9 | Accepted: 2024/12/21 | Published: 2025/04/12

References
1. Chokkareddy R, Redhi GG. Green synthesis of metal nanoparticles and its reaction mechanisms. Green Metal Nanoparticles. In Macabresque Humman Violation Hate Genocide, Mass Atrocity Enemy-Making; Oxford University Press: Oxford, UK, 2018;2018;113-139. [DOI:10.1002/9781119418900.ch4]
2. Alwash A. The green synthesis of zinc oxide catalyst using pomegranate peels extract for the photocatalytic degradation of methylene blue dye. Baghdad Sci J. 2020;12(17). [DOI:10.21123/bsj.2020.17.3.0787]
3. Mirsanei JS, Nazari M, Shabani R, Govahi A, Eghbali S, Ajdary M, et al. Does Gold-Silver Core-Shell Nanostructure with Alginate Coating Induce Apoptosis in Human Lymphoblastic Tumoral (Jurkat) Cell Line? Rep Biochem Mol Biol. 2023;12(2):233-240. [DOI:10.61186/rbmb.12.2.233] [PMID] []
4. Al-Shaheen MAS, Owaid MN, Muslim RF. Synthesis and characterization of zinc nanoparticles by natural organic compounds extracted from licorice root and their influence on germination of sorghum bicolor seeds. Jordan J Biol Sci. 2020;13(4):559-565.
5. Ahmed D, Al-Abdaly BI. Effect of SiO2 addition and calcination temperature on surface area, crystal size, particles size, and phase transformation of TiO2 prepared by sol- gel method. Solid State Technol. 2021;64(2):3945-3959.
6. Cho D, Zhou H, Cho Y, Audus A, Joo YL. Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt. Polymer. 2010;51(25):6005-6012. [DOI:10.1016/j.polymer.2010.10.028]
7. Czigány T, Ronkay F. The coronavirus and plastics. eXPRESS Polym Lett. 2020;14(6):510-511. [DOI:10.3144/expresspolymlett.2020.41]
8. Yin S, Tuladhar R, Shanks RA, Collister T, Combe M, Jacob M, et al. Fiber preparation and mechanical properties of recycled polypropylene for reinforcing concrete. J Appl Polym Sci. 2015;132(16):41866. [DOI:10.1002/app.41866]
9. Nogueira F, Teixeira P, Gouveia IC. Electrospinning polypropylene with an amino acid as a strategy to bind the antimicrobial peptide Cys-LC-LL-37. J Mater Sci. 2018;53(6):4655-4664. [DOI:10.1007/s10853-017-1841-8]
10. Corciova A, Burlec AF, Gheldiu AM, Fifere A, Lungoci AL, Marangoci N, Mircea C. Biosynthesis of silver nanoparticles using licorice extract and evaluation of their antioxidant activity. Rev Chim. 2019;70(11):4053-4056. https://doi.org/10.37358/RC.70.19.11.7700 [DOI:10.37358/RC.19.11.7700]
11. Ramazanov MA, Hajiyeva FV. Copper and copper oxide nanoparticles in polypropylene matrix: Synthesis, characterization, and dielectric properties. Compos Interfaces. 2020;27(11):1047-1060. [DOI:10.1080/09276440.2020.1722523]
12. Habeeb SA, Alkhfaji SA, Saleh KA. Electrochemical Polymerization and Biological Activity of 4-(Nicotinamido)-4-Oxo-2-Butenoic Acid as An Anticorrosion Coating on A 316L Stainless Steel Surface. Iraq J Sci. 2021;62(3):729-741. [DOI:10.24996/ijs.2021.62.3.3]
13. Elewi AS, Al-Shammaree S, Sammarraie A. Hydrogen peroxide biosensor based on hemoglobin-modified gold nanoparticles-screen printed carbon electrode. Sens BioSens Res. 2020;28:100340. [DOI:10.1016/j.sbsr.2020.100340]
14. Saleh KA, Ali MI. Electropolymerization for (N-terminal tetrahydrophthalamic acid) for anti-corrosion and biological activity applications. Iraq J Sci. 2020;61(1):1-12. [DOI:10.24996/ijs.2020.61.1.1]
15. Salih AR, Al-Messri ZA. Synthesis, characterization and evaluation of some pyranopyrazole derivatives as multifunction additives for medium lubricating oils. Iraq J Sci. 2022;63(7):2827-2838. [DOI:10.24996/ijs.2022.63.7.7]
16. Al-Husseini AH, Saleh WR, AL-Sammariate MA. A specific NH3 gas sensor of a thick MWCNTs-OH network for detection at room temperature. J Nano Res. 2019;56:98-108. [DOI:10.4028/www.scientific.net/JNanoR.56.98]
17. Jung MR, Horgen FD, Orski SV, Rodriguez CV, Beers KL, Balazs GH, et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull. 2018;127:704-716. [DOI:10.1016/j.marpolbul.2017.12.061] [PMID]
18. Mohammadi Hadloo S, Mohseni Kouchesfahani H, Khanlarkhani A, Saeidifar M. Resistance Improvement and Sensitivity Enhancement of Cancer Therapy by a Novel Antitumor Candidate onto A2780 CP and A2780 S Cell Lines. Rep Biochem Mol Biol. 2023;12(3):374-385. [DOI:10.61186/rbmb.12.3.374] [PMID] []
19. Zoromba MS, Alghool S, Abdel-Hamid SMS, Bassyouni M. Abdel-Aziz MH. Polymerization of aniline derivatives by K2Cr2O7 and production of Cr2O3 nanoparticles. Polym Adv Technol. 2017;28(7):842-848. [DOI:10.1002/pat.3987]
20. Volova TG, Shumilova AA, Shidlovskiy IP, Nikolaeva ED, Sukovatiy AG, Vasiliev AD, Shishatskaya EI. Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym Test. 2018;65:54-68. [DOI:10.1016/j.polymertesting.2017.10.023]
21. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology. 2012;40(1):53-58. [DOI:10.5941/MYCO.2012.40.1.053] [PMID] []
22. Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004;84(4):551-562. [DOI:10.1016/S0308-8146(03)00278-4]
23. Amarowicz R, Shahidi F, Pegg RB, Kenaschuk D, Boudreau D, Muir AD, Yoshida H. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004;84(4):551-562. [DOI:10.1016/S0308-8146(03)00278-4]
24. Xu J, Huang Y, Zhu S, Abbes N, Jing X, Zhang L. A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. Journal of Engineered Fibers and Fabrics. 2021;16. [DOI:10.1177/15589250211046242]
25. Kim J, Lee S, Park H, Lee J, Cho H, Kang D, et al. Green synthesis of metal oxide nanoparticles: An overview of the methods and their biomedical applications. J Nanomater. 2023;2023:5674932.
26. Al-Shaheen A, Zhang Y, Chen J, Liu X, Sun Z, Wang Z. Polyacrylonitrile-based nanocomposites for biomedical applications: Synthesis and characterization. J Appl Polym Sci. 2023;140(12):52487.
27. Zhang L, Li Y, Wang J, Zhang X, Liu L. Size-dependent properties of Ag₂O and CuO nanoparticles and their potential biomedical applications. J Biomed Nanotechnol. 2022;18(4):501-509.
28. Neihaya T, Kato T, Tanaka Y, Ishikawa S, Matsumoto K, Yamaguchi H. Influence of nanoparticle dispersion on the mechanical and thermal properties of polymeric nanocomposites. Nanocomposites. 2021;7(5):295-308.
29. Wang Y, Liu X, Zhang Y, Li Z, Ma J, Zhang X. Structural and chemical analysis of nanoparticle-polymer interactions in nanocomposites. J Mater Sci. 2022;57(18):11212-11222.
30. Al-Husseini M, Ghazal M, Badran R, Abu-Ahmed A, Al-Mansouri M. Thermal stability of nanocomposites containing metal oxide nanoparticles: A study using TGA and DSC techniques. Mater Chem Phys. 2021;257:123462.
31. Li Z, Xu F, Wang P, Zhou Q, Liu M. Thermal and phase transition behaviors of nanoparticle/polymer composites: DSC analysis. Polym Degrad Stab. 2022;195:109774.
32. Tene T, Yeger O, Lavi A, Avrahami D, Ben-Dov I. Anticancer properties of green-synthesized nanoparticles: A review. Int J Nanomedicine. 2023;18:2057-2073.
33. Ahmed T, Raza A, Khan S, Ali M, Imran M, Malik A, Hussain S. Mechanisms of selective cytotoxicity in cancer cells induced by green-synthesized nanoparticles. Toxicol Appl Pharmacol. 2021;411:115373.
34. Aloke K, Smith R, Verma M, Singh V, Gupta S. Role of reactive oxygen species in cancer progression: The effects of nanoparticles. Nanomedicine. 2021;16(4):335-348.
35. Zhao L, Liu Z, Zhang Y, Wu Y, Chen J, Yang X. Bioactive compounds in Moringa peregrina extract: Potentiating nanoparticle anticancer activity. J Nat Prod. 2021;84(7):1710-1721.
36. Kumar S, Choudhury H, Dey M, Kumar N, Arora V. Silver nanoparticles: Synthesis, characterization, and their biomedical applications. J Mater Sci. 2022;57(9):5048-5062.
37. Suresh S, Singh A, Rajendran S, Sharma A, Shankar A. Zinc oxide nanoparticles: Synthesis, characterization, and their potential therapeutic applications. Nanomaterials. 2021;11(7):1678.
38. Al-Shaheen A, Liu P, Tan W, Zhou Z, Wang Y. Thermal and mechanical properties of nanocomposites with nanoparticles: A review on polyacrylonitrile-based composites. Polymers. 2022;14(1):30.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb