Volume 13, Issue 3 (Vol.13 No.3 Oct 2024)                   rbmb.net 2024, 13(3): 377-384 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noori N M, Yaghoubi S, Aghighi A, Taheri M, Bahari G. Impact of MTHFR Gene Polymorphisms C677T and A1298C on Congenital Atrial Septal Defect Risk in an Iranian Cohort. rbmb.net 2024; 13 (3) :377-384
URL: http://rbmb.net/article-1-1461-en.html
Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran & Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
Abstract:   (624 Views)
Background: Congenital heart defects (CHD) are recognized as the most common heart abnormalities amongst newborns and children, and atrial septal defect (ASD) is recognized as one of the most frequent forms of CHD. Prior studies indicated that the methylenetetrahydrofolate reductase (MTHFR) gene contributes to the etiology of CHD. Therefore, we designed a case-control study to assess the possible role of the MTHFR gene, specifically the C677T (rs1801133) and A1298C (rs1801131) polymorphisms within the Iranian ASD population sample.

Method: A total of 166 subjects (81 children diagnosed with ASD and 85 control participants) were enrolled in this research. Samples genotyped for MTHFR rs1801133 and rs1801131 polymorphisms using the PCR-RFLP and ARMS-PCR approaches.

Results: Our results indicated that rs1801131 variant reduced the risk of ASD in codominant (OR [95%CI]: 0.41[0.21-0.83], P=0.012), dominant (OR[95%CI]: 0.48 [0.25-0.93], p=0.028) and overdominant (OR[95%CI]: 0.44 [0.23-0.81], P=0.009) models. Moreover, rs1801133 variant increased the risk of ASD in codominant (OR[95%CI]: 2.68[1.39-5.16], P = 0.003), dominant (OR [95% CI]: 2.72 [1.43–5.14], P = 0.002), overdominant (OR [95% CI]: 2.50 [1.31–4.78], P = 0.005), and allelic (OR [95% CI]: 2.16 [1.27–3.69], P = 0.004) models.

Conclusion: Our findings suggest that MTHFR rs1801133 and rs1801131 variants may potentially affect the onset of ASD.
Full-Text [PDF 273 kb]   (182 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/08/19 | Accepted: 2024/12/26 | Published: 2025/04/12

References
1. Zhu WL, Li Y, Yan L, Dao J, Li S. Maternal and offspring MTHFR gene C677T polymorphism as predictors of congenital atrial septal defect and patent ductus arteriosus.. Mol Hum Reprod 2006;12(1):51-4. [DOI:10.1093/molehr/gah252] [PMID]
2. Raina JK, Panjaliya RK, Dogra V, Sharma S, Anupriya, Kumar P. Association of MTHFR and MS/MTR gene polymorphisms with congenital heart defects in North Indian population (Jammu and Kashmir): a case-control study encompassing meta-analysis and trial sequential analysis. BMC Pediatr. 2022;22(1):223. [DOI:10.1186/s12887-022-03227-z] [PMID] []
3. GBD 2017 Congenital Heart Disease Collaborators. Global, regional, and national burden of congenital heart disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc Health. 2020;4(3):185-200.
4. Sun M, Wang T, Huang P, Diao J, Zhang S, Li J, et al. Association analysis of maternal MTHFR gene polymorphisms and the occurrence of congenital heart disease in offspring. BMC Cardiovasc Disord. 2021;21(1):298. [DOI:10.1186/s12872-021-02117-z] [PMID] []
5. Vecoli C, Pulignani S, Foffa I, Andreassi MG. Congenital heart disease: the crossroads of genetics, epigenetics and environment. Curr Genomics. 2014;15(5):390-9. [DOI:10.2174/1389202915666140716175634] [PMID] []
6. Muntean I, Togănel R, Benedek T. Genetics of Congenital Heart Disease: Past and Present. Biochem Genet. 2017;55(2):105-23. [DOI:10.1007/s10528-016-9780-7] [PMID]
7. Szot JO, Cuny H, Blue GM, Humphreys DT, Ip E, Harrison K, et al. A Screening Approach to Identify Clinically Actionable Variants Causing Congenital Heart Disease in Exome Data. Circ Genom Precis Med. 2018;11(3):e001978. [DOI:10.1161/CIRCGEN.117.001978] [PMID]
8. Hobbs CA, James SJ, Jernigan S, Melnyk S, Lu Y, Malik S, Cleves MA. Congenital heart defects, maternal homocysteine, smoking, and the 677 C>T polymorphism in the methylenetetrahydrofolate reductase gene: evaluating gene-environment interactions. Am J Obstet Gynecol. 2006;194(1):218-24. [DOI:10.1016/j.ajog.2005.06.016] [PMID]
9. Krauss RS, Hong M. Gene-Environment Interactions and the Etiology of Birth Defects. Curr Top Dev Biol. 2016;116:569-80. [DOI:10.1016/bs.ctdb.2015.12.010] [PMID]
10. Chaithra S, Agarwala S, Ramachandra NB. High-risk genes involved in common septal defects of congenital heart disease. Gene. 2022;840:146745. [DOI:10.1016/j.gene.2022.146745] [PMID]
11. Geva T, Martins JD, Wald RM. Atrial septal defects. Lancet. 2014;383(9932):1921-32. [DOI:10.1016/S0140-6736(13)62145-5] [PMID]
12. Schwedler G, Lindinger A, Lange PE, Sax U, Olchvary J, Peters B, et al. Frequency and spectrum of congenital heart defects among live births in Germany : a study of the Competence Network for Congenital Heart Defects. Clin Res Cardiol. 2011;100(12):1111-7. [DOI:10.1007/s00392-011-0355-7] [PMID]
13. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J Pediatr. 2008;153(6):807-13. [DOI:10.1016/j.jpeds.2008.05.059] [PMID] []
14. Wu MH, Chen HC, Lu CW, Wang JK, Huang SC, Huang SK. Prevalence of congenital heart disease at live birth in Taiwan. J Pediatr. 2010;156(5):782-5. [DOI:10.1016/j.jpeds.2009.11.062] [PMID]
15. Shi H, Yang S, Liu Y, Huang P, Lin N, Sun X, et al. Study on Environmental Causes and SNPs of MTHFR, MS and CBS Genes Related to Congenital Heart Disease. PloS one. 2015;10(6):e0128646. [DOI:10.1371/journal.pone.0128646] [PMID] []
16. Zhong T, Song X, Liu Y, Sun M, Zhang S, Chen L, et al. Association of methylenetetrahydrofolate reductase gene polymorphisms and maternal folic acid use with the risk of congenital heart disease. Front Pediatr. 2022;10:939119. [DOI:10.3389/fped.2022.939119] [PMID] []
17. Poodineh M, Saravani R, Mirhosseini M, Sargazi S. Association of two methylenetetrahydrofolate reductase polymorphisms (rs1801133, rs1801131) with the risk of type 2 diabetes in South-East of Iran. Rep Biochem Mol Biol. 2019;8(2):178.
18. Majstorović D, Barišić A, Božović IB, Čače IB, Čače N, Štifanić M, Vraneković J. DNMT3B rs2424913 as a Risk Factor for Congenital Heart Defects in Down Syndrome. Genes. 2023;14(3). [DOI:10.3390/genes14030576] [PMID] []
19. Sahin-Uysal N, Gulumser C, Kocaman E, Varan B, Bayraktar N, Yanık F. Maternal and cord blood homocysteine, vitamin B12, folate, and B-type natriuretic peptide levels at term for predicting congenital heart disease of the neonate: A case-control study. J Matern Fetal Neonatal Med.2020;33(15):2649-56. [DOI:10.1080/14767058.2019.1633300] [PMID]
20. Elizabeth KE, Praveen SL, Preethi NR, Jissa VT, Pillai MR. Folate, vitamin B12, homocysteine and polymorphisms in folate metabolizing genes in children with congenital heart disease and their mothers. Eur J Clin Nutr. 2017;71(12):1437-41. [DOI:10.1038/ejcn.2017.135] [PMID]
21. Castiglia P, Sanna V, Azara A, De Miglio MR, Murgia L, Pira G, et al. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in breast cancer: a Sardinian preliminary case-control study. Int J Med Sci 2019;16(8):1089-95. [DOI:10.7150/ijms.32162] [PMID] []
22. Bahari G, Hashemi M, Naderi M, Taheri M. Association between Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphisms and Susceptibility to Childhood Acute Lymphoblastic Leukemia in an Iranian Population. Int J Hematol Oncol Stem Cell Res. 2016;10(3):130-7.
23. Bouguerra K, Tazir M, Melouli H, Khelil M. The methylenetetrahydrofolate reductase C677T and A1298C genetic polymorphisms and plasma homocysteine in Alzheimer's disease in an Algerian population. Int J Neurosci. 2024;134(8):918-923. [DOI:10.1080/00207454.2022.2158825] [PMID]
24. Gimenez-Martins APD, Castanhole-Nunes MMU, Nascimento-Filho C, Santos SPD, Galbiatti-Dias ALS, Fernandes GMM, et al. Association between folate metabolism polymorphisms and breast cancer: a case-control study.Genet Mol Biol. 2021;44(4):e20200485. [DOI:10.1590/1678-4685-gmb-2020-0485] [PMID] []
25. Mohammadpour-Gharehbagh A, Teimoori B, Narooei-Nejad M, Mehrabani M, Saravani R, Salimi S. The association of the placental MTHFR 3'-UTR polymorphisms, promoter methylation, and MTHFR expression with preeclampsia.J Cell Biochem. 2018;119(2):1346-54. [DOI:10.1002/jcb.26290] [PMID]
26. Jin M, Wang N, Li X, Zhang H, Zhou J, Cong M, et al. Relationship between MTHFR C677T, homocysteine, and ischemic stroke in a large sample of the Han Chinese population. Medicine. 2022;101(38):e30562. [DOI:10.1097/MD.0000000000030562] [PMID] []
27. Wei J, Wang T, Song X, Liu Y, Shu J, Sun M, et al. Association of maternal methionine synthase reductase gene polymorphisms with the risk of congenital heart disease in offspring: a hospital-based case-control study. J Matern Fetal Neonatal Med.2023;36(1):2211201. [DOI:10.1080/14767058.2023.2211201] [PMID]
28. Noori N, Miri-Moghaddam E, Dejkam A, Garmie Y, Bazi A. Are polymorphisms in MTRR A66G and MTHFR C677T genes associated with congenital heart diseases in Iranian population? Caspian J Intern Med. 2017;8(2):83-90.
29. van Driel LM, Verkleij-Hagoort AC, de Jonge R, Uitterlinden AG, Steegers EA, van Duijn CM, Steegers-Theunissen RP. Two MTHFR polymorphisms, maternal B-vitamin intake, and CHDs. Birth Defects Res A Clin Mol Teratol. 2008;82(6):474-81. [DOI:10.1002/bdra.20463] [PMID]
30. van Beynum IM, Kapusta L, den Heijer M, Vermeulen SH, Kouwenberg M, Daniëls O, Blom HJ. Maternal MTHFR 677C>T is a risk factor for congenital heart defects: effect modification by periconceptional folate supplementation. Eur Heart J. 2006;27(8):981-7. [DOI:10.1093/eurheartj/ehi815] [PMID]
31. Zidan HE, Rezk NA, Mohammed D. MTHFR C677T and A1298C gene polymorphisms and their relation to homocysteine level in Egyptian children with congenital heart diseases. Gene. 2013;529(1):119-24. [DOI:10.1016/j.gene.2013.07.053] [PMID]
32. Obermann-Borst SA, van Driel LM, Helbing WA, de Jonge R, Wildhagen MF, Steegers EA, Steegers-Theunissen RP. Congenital heart defects and biomarkers of methylation in children: a case-control study. Eur J Clin Invest. 2011;41(2):143-50. [DOI:10.1111/j.1365-2362.2010.02388.x] [PMID]
33. Sahiner UM, Alanay Y, Alehan D, Tuncbilek E, Alikasifoglu M. Methylene tetrahydrofolate reductase polymorphisms and homocysteine level in heart defects. Pediatr Int. 2014;56(2):167-72. [DOI:10.1111/ped.12222] [PMID]
34. Hashemi M, Hanafi Bojd H, Eskandari Nasab E, Bahari A, Hashemzehi NA, Shafieipour S, et al. Association of Adiponectin rs1501299 and rs266729 Gene Polymorphisms With Nonalcoholic Fatty Liver Disease. Hepat Mon. 2013;13(5):e9527. [DOI:10.5812/hepatmon.9527]
35. Jin Y, Zhao M, Guo Q, Zhao W, Lei M, Zhang Y, et al. Association study of FLT4 and HYDIN single nucleotide polymorphisms with atrial septal defect susceptibility in the Han Chinese population of Southwest China. Ital J Pediatr. 2024;50(1):62. [DOI:10.1186/s13052-024-01630-z] [PMID] []
36. Mohieldeen WA, Ahmed A, Elmosaad YM, Suliman RS, Alfahed A, Hjazi A, et al. Detection of Methylene Tetrahydrofolate Reductase (MTHFR C677T) Mutation among Acute Lymphoblastic Leukemia in Sudanese Patients. Rep Biochem Mol Biol. 2023;12(3):458. [DOI:10.61186/rbmb.12.3.458] [PMID] []
37. Fan Y, Wu L, Zhuang W. Methylenetetrahydrofolate Reductase Gene rs1801133 and rs1801131 Polymorphisms and Essential Hypertension Risk: A Comprehensive Analysis. Cardiovasc Ther. 2022;2022:2144443. [DOI:10.1155/2022/2144443] [PMID] []
38. Liu P-F, Ding B, Zhang J-Y, Mei X-F, Li F, Wu P, et al. Association between MTHFR C677T polymorphism and congenital heart disease a prisma-compliant meta-analysis. Int Heart J. 2020;61(3):553-61. [DOI:10.1536/ihj.19-389] [PMID]
39. Ali SI, Khan OY, Naveed N, Ahmad H, Patel N, Arif A. Congenital septal defects in Karachi, Pakistan: an update of mutational screening by high-resolution melting (HRM) analysis of MTHFR C677T.Hum Genomics. 2024;18(1):6. [DOI:10.1186/s40246-023-00566-5] [PMID] []
40. Shivkar RR, Gawade GC, Padwal MK, Diwan AG, Mahajan SA, Kadam CY. Association of MTHFR C677T (rs1801133) and A1298C (rs1801131) polymorphisms with serum homocysteine, folate and vitamin B12 in patients with young coronary artery disease. Indian J Clin Biochem. 2022;37(2):224-31. [DOI:10.1007/s12291-021-00982-1] [PMID] []
41. Shi H, Yang S, Lin N, Huang P, Yu R, Chen M, et al. Study on Maternal SNPs of MTHFR Gene and HCY Level Related to Congenital Heart Diseases. Pediatr Cardiol. 2021;42(1):42-46. [DOI:10.1007/s00246-020-02449-1] [PMID] []
42. Sun M, Wang T, Huang P, Diao J, Zhang S, Li J, et al. Association analysis of maternal MTHFR gene polymorphisms and the occurrence of congenital heart disease in offspring. BMC Cardiovasc Disord. 2021;21(1):298. [DOI:10.1186/s12872-021-02117-z] [PMID] []
43. Zidan HE, Rezk NA, Mohammed D. MTHFR C677T and A1298C gene polymorphisms and their relation to homocysteine level in Egyptian children with congenital heart diseases. Gene. 2013;529(1):119-24. [DOI:10.1016/j.gene.2013.07.053] [PMID]
44. Samii A, Aslani S, Imani D, Razi B, Samaneh Tabaee S, Jamialahmadi T, Sahebkar A. MTHFR gene polymorphisms and susceptibility to myocardial infarction: Evidence from meta-analysis and trial sequential analysis. Int J Cardiol Heart Vasc. 2023;49:101293. [DOI:10.1016/j.ijcha.2023.101293] [PMID] []
45. Song H, Zhao Z, Liu S, Li C, Zhou Y, Xin Y. Methylenetetrahydrofolate Reductase Gene rs1801131 and rs1801133 Polymorphisms were Associated with Susceptibility to Coronary Artery Disease and Nonalcoholic Fatty Liver Disease. Gene Expr. 2023;22(2):102-8. [DOI:10.14218/GE.2022.00016S]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb