Volume 13, Issue 3 (Vol.13 No.3 Oct 2024)                   rbmb.net 2024, 13(3): 310-321 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saputri D, Muhammad Alibasyah Z, Nuzulul Ismi S, Arfirosa A. The Relationship Between the Growth of Fusobacterium nucleatum ATCC 25586 in Glucose-Enriched Media and Protein Activity through Fourier Transform Infrared (FTIR). rbmb.net 2024; 13 (3) :310-321
URL: http://rbmb.net/article-1-1462-en.html
Department of Periodontics, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
Abstract:   (576 Views)
Background: Fusobacterium nucleatum (F. nucleatum) is known to increase in number under hyperglycemic conditions, as it is thought to utilize glucose as a nutrient source. The process of glucose utilization in bacteria occurs with the assistance of enzymatic proteins such as glucokinase. This study aims to investigate the glucose utilization by F. nucleatum ATCC 25586 by examining its growth in glucose-enriched media and its relationship with protein activity through FTIR analysis.

Methods: F. nucleatum ATCC 25586 was cultured in media enriched with 2%, 1%, 0.75%, 0.5%, and 0.25% glucose. Its growth was measured using a spectrophotometer, and protein activity was assessed with FTIR at 24 and 48 hours of incubation.

Results: The results showed that F. nucleatum could utilize glucose as a nutrient source, indicated by growth and protein activity. The maximum growth of F. nucleatum occurred at a 0.75% glucose concentration at 24 hours. However, the Kruskal-Wallis test showed no significant differences in the growth and protein activity of F. nucleatum across the five glucose concentrations (growth, p=0.271 and protein, p=0.149). Spearman correlation analysis indicated no correlation between the growth and protein activity of F. nucleatum (p=0.323). The protein activity of F. nucleatum remained stable across various growth levels.

Conclusion: It can be concluded that glucose could influence the growth of F. nucleatum, although the growth and protein activity of the bacteria did not differ significantly based on glucose concentration. F. nucleatum grown in various glucose concentrations exhibits stable protein activity.
Full-Text [PDF 522 kb]   (264 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/08/20 | Accepted: 2024/12/26 | Published: 2025/04/12

References
1. Chew J, Zilm PS, Fuss JM, Gully NJ. A proteomic investigation of Fusobacterium nucleatum alkaline-induced biofilms. BMC Microbiol. 2012;12(1):1. [DOI:10.1186/1471-2180-12-189] [PMID] []
2. Lima BP, Shi W, Lux R. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen. 2017;6(3):1-10. [DOI:10.1002/mbo3.444] [PMID] []
3. Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium species and subspecies differentially affect the composition and architecture of supra- and subgingival biofilm models. Front Microbiol. 2019;10:1-11. [DOI:10.3389/fmicb.2019.01716] [PMID] []
4. Lagha A Ben, Haas B, Grenier D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci Rep. 2017;7:1-10. [DOI:10.1038/srep44815] [PMID] []
5. Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT, et al. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med. 2019;5(3):178-87. [DOI:10.1016/j.cdtm.2019.09.001] [PMID] []
6. Nagpal SJS, Mukhija D, Patel P. Fusobacterium nucleatum: a rare cause of pyogenic liver abscess. Springerplus. 2015;4(1):0-4. [DOI:10.1186/s40064-015-1090-8] [PMID] []
7. Vander Haar EL, So J, Gyamfi-Bannerman C, Han YW. Fusobacterium nucleatum and adverse pregnancy outcomes: epidemiological and mechanistic evidence. Anaerobe. 2018;50:55-9. [DOI:10.1016/j.anaerobe.2018.01.008] [PMID] []
8. Han YW. Fusobacterium nucleatum: A commensal-turned pathogen. Curr Opin Microbiol. 2015;23:141-7. [DOI:10.1016/j.mib.2014.11.013] [PMID] []
9. Miranda TS, Feres M, Retamal-Valdes B, Perez-Chaparro PJ, Maciel SS, Duarte PM. Influence of glycemic control on the levels of subgingival periodontal pathogens in patients with generalized chronic periodontitis and type 2 diabetes. J Appl Oral Sci. 2017;25(1):82-9. [DOI:10.1590/1678-77572016-0302] [PMID] []
10. Willis JR, Gabaldón T. The human oral microbiome in health and disease: From sequences to ecosystems. Microorganisms. 2020;8(2):1-28. [DOI:10.3390/microorganisms8020308] [PMID] []
11. Zhou M, Rong R, Munro D, Zhu C, Gao X, Zhang Q, Dong Q. Investigation of the effect of type 2 diabetes mellitus on subgingival plaque microbiota by high-throughput 16S rDNA pyrosequencing. PLoS One. 2013;8(4):e58044. [DOI:10.1371/journal.pone.0061516] [PMID] []
12. Passalacqua KD, Charbonneau ME, O'Riordan MXD. Bacterial metabolism shapes the host-pathogen interface. Microbiol Spectr. 2016;4(3):1-21. [DOI:10.1128/microbiolspec.VMBF-0027-2015] [PMID] []
13. Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol. 2011;19(7):341-8. [DOI:10.1016/j.tim.2011.04.003] [PMID] []
14. Chen Y, Nielsen J. Energy metabolism controls phenotypes by protein efficiency and allocation. Proc Natl Acad Sci U S A. 2019;116(35):17592-7. [DOI:10.1073/pnas.1906569116] [PMID] []
15. Rocha D, Romero A, Ruiz-Villafán B, Sanchez S. Significance of microbial glucokinase. In: Brachmachari G, Demain AL, Adrio JL, editors. Biotechnology of microbial enzymes. United Kingdom: Elsevier; 2012. p. 299-323. [DOI:10.1016/B978-0-12-803725-6.00012-1] [PMID] []
16. Romero-Rodríguez A, Ruiz-Villafán B, Rocha-Mendoza D, Manzo-Ruiz M, Sánchez S. Biochemistry and regulatory functions of bacterial glucose kinases. Arch Biochem Biophys. 2015;577:80-9. [DOI:10.1016/j.abb.2015.05.001] [PMID]
17. Yang Y, Hu M, Yu K, Zeng X, Liu X. Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions. Protein Cell. 2015;6(4):265-74. [DOI:10.1007/s13238-015-0136-6] [PMID] []
18. Sjahfirdi L, Mayangsari, Nasikin M. Protein identification using Fourier transform infrared. Int J Recent Res Appl Stud. 2012;10(3):418-21.
19. Kosa G, Shapaval V, Kohler A, Zimmermann B. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb Cell Fact. 2017;16(1):1-11. [DOI:10.1186/s12934-017-0817-3] [PMID] []
20. Walker JM. Methods in Molecular Biology. New York: Humana Press; 2012: 195-197.
21. Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V. FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLoS One. 2017;12(1):1-17. [DOI:10.1371/journal.pone.0170611] [PMID] []
22. Goodson JM, Hartman ML, Shi P, Hasturk H, Yaskell T, Vargas J, et al. The salivary microbiome is altered in the presence of a high salivary glucose concentration. PLoS One. 2017;12(3):e0170437. [DOI:10.1371/journal.pone.0170437] [PMID] []
23. Mubarak Z, Chismirina S, Daulay HH. Aktivitas antibakteri ekstrak propolis alami dari sarang lebah terhadap pertumbuhan Enterococcus faecalis. J Syiah Kuala Dent Soc. 2016;1(2):175-86.
24. Romadhani DF, Fahmy AH, Alam IP, Salim HM. Bactericidal effects of extract basil leaves in in-vitro study of Pseudomonas aeruginosa. Biomol Health Sci J. 2020;3(2):105. [DOI:10.20473/bhsj.v3i2.22090]
25. Soraya C, Mubarak Z, Gani BA. The growth and biofilm formation of Enterococcus faecalis in ethanol extract of Citrus aurantiifolia Indonesian species. J Pharm Pharmacogn Res. 2020;8(6):558-68. [DOI:10.56499/jppres20.895_8.6.558]
26. Kralik P, Beran V, Pavlik I. Enumeration of Mycobacterium avium subsp. paratuberculosis by quantitative real-time PCR, culture on solid media and optical densitometry. BMC Res Notes. 2012;5(1):114. [DOI:10.1186/1756-0500-5-114] [PMID] []
27. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA. Brock Biology of Microorganisms. 14th ed. USA: Pearson; 2015.
28. Sutton S. Measurement of microbial cells by optical density. J Valid Technol. 2011;17(1):46-9.
29. Kamnev AA, Dyatlova YA, Kenzhegulov OA, Vladimirova AA, Mamchenkova PV, Tugarova AV. Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: Sample preparation effects. Molecules. 2021;26(4):1146. [DOI:10.3390/molecules26041146] [PMID] []
30. Gieroba B, Krysa M, Wojtowicz K, Wiater A, Tomczyk M. The FT-IR and Raman spectroscopies as tools for biofilm characterization created by cariogenic streptococci. Int J Mol Sci. 2020;21(11):1-20. [DOI:10.3390/ijms21113811] [PMID] []
31. Naumann D. Infrared spectroscopy in microbiology / Encyclopedia of Analytical Chemistry / Ed. Meyers R.A. Wiley: Chichester, UK, 2000. [DOI:10.1002/9780470027318.a0117]
32. Edwards VH. The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng. 1970;12(5):679-712. [DOI:10.1002/bit.260120504] [PMID]
33. Mizzi L, Maniscalco D, Gaspari S, Chatzitzika C, Gatt R, Valdramidis VP. Assessing the individual microbial inhibitory capacity of different sugars against pathogens commonly found in food systems. Lett Appl Microbiol. 2020;71(3):251-8. [DOI:10.1111/lam.13306] [PMID]
34. Chismirina S, Sungkar S, Adlim M, Darmawi D. Streptococcus mutans serotype analysis from dental plaque of caries patients in Banda Aceh based on the GTF gene. Rep Biochem Mol Biol. 2023;12(1):205-10. [DOI:10.61186/rbmb.12.1.205] [PMID] []
35. Hofstad T. The Genus Fusobacterium. In: Prokaryotes. 3rd ed. Springer; 2006. [DOI:10.1007/0-387-30747-8_51]
36. Consumi M, Jankowska K, Leone G, Rossi C, Pardini A, Robles E, et al. Non-destructive monitoring of Pseudomonas fluorescens and Staphylococcus epidermidis biofilm under different media by Fourier transform infrared spectroscopy and other corroborative techniques. Coatings. 2020;10(10):1-15. [DOI:10.3390/coatings10100930]
37. Didiasova M, Schaefer L, Wygrecka M. When place matters: Shuttling of enolase-1 across cellular compartments. Front Cell Dev Biol. 2019;7:61. [DOI:10.3389/fcell.2019.00061] [PMID] []
38. Jojima T, Inui M. Engineering the glycolytic pathway: A potential approach for improvement of biocatalyst performance. Bioengineered. 2015;6(6):328-34. [DOI:10.1080/21655979.2015.1111493] [PMID] []
39. Sheng M, Gorzsás A, Tuck S. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of Caenorhabditis elegans worms. Worm. 2016;6(1):1-14. [DOI:10.1080/21624054.2015.1132978] [PMID] []
40. Brandes A, Lun DS, Ip K, Zucker J, Colijn C, Weiner B, et al. Inferring carbon sources from gene expression profiles using metabolic flux models. PLoS One. 2012;7(5):e34559. [DOI:10.1371/journal.pone.0036947] [PMID] []
41. Noack S, Voges R, Gätgens J, Wiechert W. The linkage between nutrient supply, intracellular enzyme abundances and bacterial growth: New evidences from the central carbon metabolism of Corynebacterium glutamicum. J Biotechnol. 2017;258:13-24. [DOI:10.1016/j.jbiotec.2017.06.407] [PMID]
42. Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, Link H, et al. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol. 2013;9:709. [DOI:10.1038/msb.2013.66] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb