Volume 13, Issue 3 (Vol.13 No.3 Oct 2024)                   rbmb.net 2024, 13(3): 368-376 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Razzaghi H, Heiat M, Khoncheh A, Abyazi M A, Zaki-Dizaji M. Platelet-Derived circRNAs hsa_circ_0004771 and hsa_circ_0019120 Differentially Expressed in Colorectal Cancer and Polyps. rbmb.net 2024; 13 (3) :368-376
URL: http://rbmb.net/article-1-1469-en.html
Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Abstract:   (435 Views)
Background: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths worldwide. Early detection is crucial for improving survival rates. Liquid biopsies, specifically analyzing circulating tumor-educated platelets (TEPs), have emerged as a promising tool for early CRC detection and monitoring treatment efficacy. This study investigated the expression levels of two specific circRNAs, hsa_circ_0004771 and hsa_circ_0019120, in the platelets of patients with CRC, advanced polyps, and healthy controls.

Methods: Blood samples were obtained from 25 individuals with CRC, 25 individuals with advanced polyps, and 25 healthy controls. Platelet-derived total RNA was extracted, and expression analysis was conducted using reverse transcription quantitative PCR (RT-qPCR). Differential expression and receiver operating characteristic (ROC) curve analysis were performed using GraphPad Prism.

Results: Both circRNAs were found to be upregulated in platelets from individuals with advanced polyps and CRC compared to healthy individuals. However, the upregulation was statistically significant only for hsa_circ_0004771 in CRC patients (p-value = 0.0036) and for hsa_circ_0019120 in both advanced polyp (p-value = 0.0175) and CRC patients (p-value = 0.0356). The combined analysis of both circRNAs achieved an area under the curve (AUC) of 0.8348 (95% CI: 0.7131 to 0.9565) with a sensitivity of 84% and specificity of 80% (p-value = 0.0002).

Conclusions: This study showed that hsa_circ_0004771 and hsa_circ_0019120 dysregulated in both CRC and polyps and have potential as a novel diagnostic biomarker of CRC.
 
Full-Text [PDF 688 kb]   (111 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2024/08/30 | Accepted: 2024/11/10 | Published: 2025/04/12

References
1. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021;134(7):783-791. [DOI:10.1097/CM9.0000000000001474] [PMID] []
2. Taheri Z, Asadzadeh Aghdaei H, Irani S, Modarressi MH, Zahra N. Evaluation of the Epigenetic Demethylation of NRF2, a Master Transcription Factor for Antioxidant Enzymes, in Colorectal Cancer. Rep Biochem Mol Biol. 2020;9(1):33-39. [DOI:10.29252/rbmb.9.1.33] [PMID] []
3. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Primers. 2015;1:15065. [DOI:10.1038/nrdp.2015.65] [PMID] []
4. van der Pool AE, Damhuis RA, Ijzermans JN, de Wilt JH, Eggermont AM, Kranse R, Verhoef C. Trends in incidence, treatment and survival of patients with stage IV colorectal cancer: a population-based series. Colorectal Dis. 2012;14(1):56-61. [DOI:10.1111/j.1463-1318.2010.02539.x] [PMID]
5. Kow AWC. Hepatic metastasis from colorectal cancer. J Gastrointest Oncol. 2019;10(6):1274-1298. [DOI:10.21037/jgo.2019.08.06] [PMID] []
6. Nguyen LH, Goel A, Chung DC. Pathways of Colorectal Carcinogenesis. Gastroenterology. 2020;158(2):291-302. [DOI:10.1053/j.gastro.2019.08.059] [PMID] []
7. Provenzale D, Ness RM, Llor X, Weiss JM, Abbadessa B, Cooper G, et al. NCCN Guidelines Insights: Colorectal Cancer Screening, Version 2.2020. J Natl Compr Canc Netw. 2020;18(10):1312-20. [DOI:10.6004/jnccn.2020.0048] [PMID] []
8. Khabbazpour M, Tat M, Karbasi A, Abyazi MA, Khodadoustan G, Heidary Z, Zaki-Dizaji M. Advances in blood DNA methylation-based assay for colorectal cancer early detection: a systematic updated review. Gastroenterol Hepatol Bed Bench. 2024;17(3):225-240.
9. Ahmadi A, Bayatiani MR, Seif F, Ansari J, Rashidi P, Moghadasi M, Etemadi M. Evaluation of Radiotherapy on miR-374 Gene Expression in Colorectal Cancer Patient Blood Samples. Rep Biochem Mol Biol. 2022;10(4):614-621. [DOI:10.52547/rbmb.10.4.614] [PMID] []
10. Mahmoudivar S, Zarredar H, Asadi M, Zafari V, Hashemzadeh S, Farzaneh R, Asvadi Kermani T. Serum miR-23 and miR-150 Profiles as Biomarkers for Predicting Recurrence following Surgical Intervention in Colorectal Cancer Patients. Rep Biochem Mol Biol. 2024;12(4):540-549. [DOI:10.61186/rbmb.12.4.540] [PMID] []
11. Razzaghi H, Khabbazpour M, Heidary Z, Heiat M, Shirzad Moghaddam Z, Derogar P, et al. Emerging Role of Tumor-Educated Platelets as a New Liquid Biopsy Tool for Colorectal Cancer. Arch Iran Med. 2023;26(8):447-54. [DOI:10.34172/aim.2023.68] [PMID] []
12. Xue L, Xie L, Song X, Song X. Identification of potential tumor-educated platelets RNA biomarkers in non-small-cell lung cancer by integrated bioinformatical analysis. J Clin Lab Anal. 2018;32(7):e22450. [DOI:10.1002/jcla.22450] [PMID] []
13. Dong X, Song X, Ding S, Yu M, Shang X, Wang K, et al. Tumor-educated platelet SNORD55 as a potential biomarker for the early diagnosis of non-small cell lung cancer. Thorac Cancer. 2021;12(5):659-666. [DOI:10.1111/1759-7714.13823] [PMID] []
14. Mendoza-Almanza G, Burciaga-Hernández L, Maldonado V, Melendez-Zajgla J, Olmos J. Role of platelets and breast cancer stem cells in metastasis. World J Stem Cells. 2020;12(11):1237-1254. [DOI:10.4252/wjsc.v12.i11.1237] [PMID] []
15. Best MG, Wurdinger T. Tumor-educated platelets for the earlier detection of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2020;44(6):794-795. [DOI:10.1016/j.clinre.2020.03.028] [PMID]
16. Waqar W, Asghar S, Manzoor S. Platelets' RNA as biomarker trove for differentiation of early-stage hepatocellular carcinoma from underlying cirrhotic nodules. PLoS One. 2021;16(9):e0256739. [DOI:10.1371/journal.pone.0256739] [PMID] []
17. Campanella R, Guarnaccia L, Cordiglieri C, Trombetta E, Caroli M, Carrabba G, et al. Tumor-Educated Platelets and Angiogenesis in Glioblastoma: Another Brick in the Wall for Novel Prognostic and Targetable Biomarkers, Changing the Vision from a Localized Tumor to a Systemic Pathology. Cells. 2020;9(2):294. [DOI:10.3390/cells9020294] [PMID] []
18. Campolo F, Sesti F, Feola T, Puliani G, Faggiano A, Tarsitano MG, et al. Platelet-derived circRNAs signature in patients with gastroenteropancreatic neuroendocrine tumors. J Transl Med. 2023;21(1):548. [DOI:10.1186/s12967-023-04417-8] [PMID] []
19. Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, et al. Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 2016;127(9):e1-e11. [DOI:10.1182/blood-2015-06-649434] [PMID] []
20. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34(8):e63. [DOI:10.1093/nar/gkl151] [PMID] []
21. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141-57. [DOI:10.1261/rna.035667.112] [PMID] []
22. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell. 2015;58(5):870-85. [DOI:10.1016/j.molcel.2015.03.027] [PMID]
23. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44(3):1370-83. [DOI:10.1093/nar/gkv1367] [PMID] []
24. Qiao XX, Shi HB, Xiao L. Serum exosomal hsa-circ-0004771 modulates the resistance of colorectal cancer to 5-fluorouracil via regulating miR-653/ZEB2 signaling pathway. Cancer Cell Int. 2023;23(1):243. [DOI:10.1186/s12935-023-03072-9] [PMID] []
25. Wang Y, Li Z, Xu S, Guo J. Novel potential tumor biomarkers: Circular RNAs and exosomal circular RNAs in gastrointestinal malignancies. J Clin Lab Anal. 2020;34(7):e23359. [DOI:10.1002/jcla.23359] [PMID] []
26. Pan B, Qin J, Liu X, He B, Wang X, Pan Y, et al. Identification of Serum Exosomal hsa-circ-0004771 as a Novel Diagnostic Biomarker of Colorectal Cancer. Front Genet. 2019;10:1096. [DOI:10.3389/fgene.2019.01096] [PMID] []
27. Lei T, Zhang Y, Wang X, Liu W, Feng W, Song W. Integrated analysis of the functions and clinical implications of exosome circRNAs in colorectal cancer. Front Immunol. 2022;13:919014. [DOI:10.3389/fimmu.2022.919014] [PMID] []
28. Lieberman DA, Rex DK, Winawer SJ, Giardiello FM, Johnson DA, Levin TR. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2012;143(3):844-857. [DOI:10.1053/j.gastro.2012.06.001] [PMID]
29. Zhong S, Feng J. CircPrimer 2.0: a software for annotating circRNAs and predicting translation potential of circRNAs. BMC Bioinformatics. 2022;23(1):215. [DOI:10.1186/s12859-022-04705-y] [PMID] []
30. Mohamad MA, Mohd Manzor NF, Zulkifli NF, Zainal N, Hayati AR, Ahmad Asnawi AW. A Review of Candidate Genes and Pathways in Preeclampsia-An Integrated Bioinformatical Analysis. Biology (Basel). 2020;9(4):62. [DOI:10.3390/biology9040062] [PMID] []
31. Docquier A, Harmand PO, Fritsch S, Chanrion M, Darbon JM, Cavaillès V. The transcriptional coregulator RIP140 represses E2F1 activity and discriminates breast cancer subtypes. Clin Cancer Res. 2010;16(11):2959-70. [DOI:10.1158/1078-0432.CCR-09-3153] [PMID] []
32. Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20. https://doi.org/10.1186/s12943-019-1031-1 [DOI:10.1186/s12943-018-0935-5]
33. Klejman MP, Zhao X, van Schaik FM, Herr W, Timmers HT. Mutational analysis of BTAF1-TBP interaction: BTAF1 can rescue DNA-binding defective TBP mutants. Nucleic Acids Res. 2005;33(17):5426-36. [DOI:10.1093/nar/gki850] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb