Volume 13, Issue 3 (Vol.13 No.3 Oct 2024)                   rbmb.net 2024, 13(3): 358-367 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fayyad R J, Ali Alanisi E M A, Mohammed Ali A N M A. Algae-Mediated Green Synthesis of Dextran-Coated Titanium Nanoparticles and Their Cytotoxic Potential Against MCF7 Breast Cancer Cells. rbmb.net 2024; 13 (3) :358-367
URL: http://rbmb.net/article-1-1472-en.html
Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
Abstract:   (550 Views)
Background: The green synthesis of nanoparticles through algae-mediated processes offers an eco-friendly, cost-effective, and scalable approach for producing nanomaterials with potential applications in cancer therapy. The present study investigated the algae-mediated green synthesis of dextran-coated titanium oxide nanoparticles (TiO2NPs) and evaluated their cytotoxic effects against MCF-7 breast cancer cells.

Methods: Chlorella vulgaris was isolated and identified. The polymerase chain reaction (PCR)-amplification of the 18S ribosomal RNA gene was used to confirm the isolate. Dextran from C. vulgaris was used to prepare coated TiO2NPs, characterized using three techniques. The cytotoxicity of the dextran-coated TiO2NPs was evaluated using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay on MCF7- breast cancer cells at various concentrations (25, 50, and 75%) and exposure times (24, 48, and 72 hours). The bioactive compounds in the algal extract were also identified by gas chromatography-mass spectrometry (GC-MS).

Results: Chlorella vulgaris was successfully isolated as confirmed by the 345-bp PCR-amplified fragment. The characterization of the TiO2NPs confirmed the successful nanoparticle formation. A cluster of nanocrystalline particles had an average diameter of 71.44 nm. Compositional analysis revealed 15.85% atomic percentage for titanium. The dextran-coated TiO2NPs exhibited an impressive cytotoxicity rate of up to 99% at optimal concentration (25%) and exposure time (48 hours). Additionally, GC-MS analysis identified bioactive compounds in the algal extract, such as fatty acids, which may contribute to the observed anticancer effects.

Conclusion: The study demonstrated the potential of algae-mediated TiO2NPs in cancer co-therapy, enhancing treatment effectiveness and reducing the side effects of traditional therapies.
Full-Text [PDF 347 kb]   (183 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2024/09/4 | Accepted: 2025/01/19 | Published: 2025/04/12

References
1. Mansour AT, Alprol AE, Ashour M, Ramadan KMA, Alhajji AHM, Abualnaja KM. Do Red Seaweed Nanoparticles Enhance the Bioremediation Capacity of Toxic Dyes from Aqueous Solution? Gels. 2022;8 (5):310. [DOI:10.3390/gels8050310] [PMID] []
2. Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells NanomedBiotechnol. 2019;47 (1):844-51. [DOI:10.1080/21691401.2019.1577878] [PMID]
3. Irshad MA, Nawaz R, Rehman MZU, Adrees M, Rizwan M, Ali S, et al. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicol Environ Saf. 2021;212:111978. [DOI:10.1016/j.ecoenv.2021.111978] [PMID]
4. Sidorowicz A, Fais G, Casula M, Borselli M, Giannaccare G, Locci AM, et al. Nanoparticles from Microalgae and Their Biomedical Applications. Mar Drugs. 2023;21 (6):352. [DOI:10.3390/md21060352] [PMID] []
5. Mukherjee A, Sarkar D, Sasmal S. A Review of Green Synthesis of Metal Nanoparticles Using Algae. Front Microbiol. 2021;12:693899. [DOI:10.3389/fmicb.2021.693899] [PMID] []
6. Kawassaki RK, Romano M, Dietrich N, Araki K. Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. Front Nanotechnol. 2021; 3: 735434. [DOI:10.3389/fnano.2021.735434]
7. Cree IA, Charlton P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer. 2017;17 (1):10. [DOI:10.1186/s12885-016-2999-1] [PMID] []
8. Khorasaninejad M, Chen WT, Zhu AY, Oh J, Devlin RC, Roques-Carmes C, et al. Visible Wavelength Planar Metalenses Based on Titanium Dioxide. IEEE J Sel Top Quantum Electron. 2017;23 (3):43-58. [DOI:10.1109/JSTQE.2016.2616447]
9. Shah SNA, Shah Z, Hussain M, Khan M. Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem. Bioinorg Chem Appl. 2017;2017:4101735. [DOI:10.1155/2017/4101735] [PMID] []
10. Bock C, Krienitz L, Pröschold T. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including a description of seven new species. Fottea. 2011;11 (2):293-312. [DOI:10.5507/fot.2011.028]
11. Carreño EA, Alberto AVP, de Souza CAM, de Mello HL, Henriques-Pons A, Anastacio Alves L. Considerations and Technical Pitfalls in the Employment of the MTT Assay to Evaluate Photosensitizers for Photodynamic Therapy. Appl Sci. 2021;11 (6):2603. [DOI:10.3390/app11062603]
12. Fayyad R, Mohammed Ali A, Saeed NAH, Hamzah I, Dwaish A. Phycosynthesis of Silver Nanoparticles Using Cladophora Glomerata and Evaluation of Their Ability to Inhibit the Proliferation of MCF-7 and L20B Cell Lines. Asian Pac J Cancer Prev. 2022; 23 (10): 3563-9. [DOI:10.31557/APJCP.2022.23.10.3563] [PMID] []
13. Adil BH, Al-Shammari AM, Murbat HH. Breast cancer treatment using cold atmospheric plasma generated by the FE-DBD scheme. Clin Plasma Med. 2020;19-20:100103. [DOI:10.1016/j.cpme.2020.100103]
14. Ao Y, Shen W, Yuan A, Yuan A, Yin Y, He Y, Shen S. The Amplification and Application of Ribosomal RNA (rDNA) Gene Sequences of Blidingia minima (Chlorophyta, Blidingia). Open J Mar Sci. 2020;10 (3):177-90. [DOI:10.4236/ojms.2020.103014]
15. Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian PY. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS One. 2014;9 (3):e90053. [DOI:10.1371/journal.pone.0090053] [PMID] []
16. Haji SH, Ali FA, Aka STH. Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Sci Rep. 2022;12 (1):15254. [DOI:10.1038/s41598-022-19698-0] [PMID] []
17. Salem SS, El-Belely EF, Niedbała G, Alnoman MM, Hassan SE, Eid AM, et al. Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. Nanomaterials (Basel). 2020;10 (10):2082. [DOI:10.3390/nano10102082] [PMID] []
18. Telegeev G, Kutsevol N, Chumachenko V, Naumenko A, Telegeeva P, Filipchenko S, Harahuts Y. Dextran-polyacrylamide as matrices for creation of anticancer nanocomposite. Int J Polym Sci. 2017;2017:1-9. [DOI:10.1155/2017/4929857]
19. Ghamarpoor R, Fallah A, Jamshidi M. Investigating the use of titanium dioxide (TiO2) nanoparticles on the amount of protection against UV irradiation. Sci Rep. 2023;13 (1):9793. [DOI:10.1038/s41598-023-37057-5] [PMID] []
20. Nadir A, Shteinfer-Kuzmine A, Pandey SK, Ortas J, Kerekes D, Shoshan-Barmatz V. Pro-Apoptotic and Anti-Cancer Activity of the VernonanthuraNudiflora Hydroethanolic Extract. Cancers (Basel). 2023;15 (5):1627. [DOI:10.3390/cancers15051627] [PMID] []
21. Srinivasan M, Venkatesan M, Arumugam V, Natesan G, Saravanan N, Murugesan S, et al. Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem. 2019;80:197-202. [DOI:10.1016/j.procbio.2019.02.010]
22. Sobhani Z, Khademi R, Behnam MA, Akhavan A, Akbarizadeh AR. Preparation and Characterization of TiO2-PEG NPs loaded with Doxorubicin. Res Pharm Sci. 2019;5:93-102.
23. Zhang H, Banfield JF. Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem. 1998;8 (9):2073-6. [DOI:10.1039/a802619j]
24. van Vlerken LE, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv. 2006;3 (2):205-16. [DOI:10.1517/17425247.3.2.205] [PMID]
25. Medhat D, Hussein J, El-Naggar ME, Attia MF, Anwar M, Latif YA, et al. Effect of Au-dextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations. Biomed Pharmacother. 2017;91:1006-1016. [DOI:10.1016/j.biopha.2017.05.043] [PMID]
26. Zafaryab M, Fakhri KU, Khan MA, Hajela K, Mushahid M, Rizvi MM. In vitro assessment of the cytotoxic and apoptotic potential of palmitic acid for breast cancer treatment. Int J Life Sci Res. 2019;7 (1):166-74.
27. Mofeed J, Deyab M, El A, Sabry AE, Ward F. In vitro anticancer activity of five marine seaweed extracts from Egypt against human breast and colon cancer cell lines. Res Sq. 2021;1-15. [DOI:10.21203/rs.3.rs-462221/v1] [PMID]
28. Prathipkumar S, Vijayakumar S, Alsalhi MS, Devanesan S, Nilavukkarasi M, Sangeetha R, et al. Biogenic-mediated silver nanoparticles using heneicosane and their enhanced antimicrobial, antiproliferative, sensing capability, and photocatalytic potential. Appl Nanosci. 2023;13:5839-49. [DOI:10.1007/s13204-023-02787-5]
29. Sharma SK, Ali M, Mir SR. Isolation of some novel phytoconstituents from Anaphalisaraneosa roots. Indian J Chem-Sect B Org Med Chem. 2004;35 (11):2858-62. [DOI:10.1002/chin.200411160]
30. Gao LW, Zhang P. An update on chemistry and bioactivities of secondary metabolites from the marine algal-derived endophytic fungi. Phytochem Rev. 2023;22:587-614. [DOI:10.1007/s11101-022-09852-x]
31. Rawan Hassan Al-Saeedi, Khalaj-Kondori M, Hosseinpour Feizi MA, Hajavi J. DOX-PLGA nanoparticles effectively suppressed the expression of pro-inflammatory cytokines TNF-α, IL-6, iNOS, and IL-1β in MCF-7 breast cancer cell line. Rep Biochem Mol Biol. 2024;12 (4):530-539. [DOI:10.61186/rbmb.12.4.530] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb