Volume 13, Issue 3 (Vol.13 No.3 Oct 2024)                   rbmb.net 2024, 13(3): 301-309 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Diaa Subhi M, Abdul Wadood AL-Shammaree S. Evaluation of Paraoxonase-1 Activity of Arylesterase and Lactonase and Their Correlation with Oxidative Stress in Children with Type 1 Diabetes Mellitus. rbmb.net 2024; 13 (3) :301-309
URL: http://rbmb.net/article-1-1498-en.html
University of Baghdad, College of Science, Department of Chemistry, Baghdad, Iraq.
Abstract:   (673 Views)
Background: Type 1 diabetes mellitus (T1DM) is a chronic autoimmune condition that can lead to long-term complications due to oxidative stress and metabolic dysregulation. Paraoxonase-1 (PON-1), an enzyme associated with high-density lipoprotein (HDL), has dual activities: arylesterase and lactonase. These activities protect lipids from oxidative damage. The functional status of PON-1 in children with T1DM may provide insights into the relationship between oxidative stress and the enzyme’s protective role. This study aims to assess the arylesterase and lactonase activities of PON-1 in Iraqi children with T1DM.

Methods: Sixty-seven children with T1DM were enrolled and compared with 57 age-matched healthy controls. The enzymatic activities of arylesterase and lactonase were measured to evaluate PON-1’s functional status. The Paraoxonase-1/HDL (PON/HDL) ratio was calculated to assess lipid protection and antioxidant capacity. Oxidative status was assessed by measuring total oxidative status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI).

Results: PON-1 activity analysis showed a significant reduction in arylesterase (2.36 ± 1.17) and lactonase (21.9 ± 7.31) in the patients group compared to controls (arylesterase=4.54 ± 1.84, lactonase =29.51 ± 9.92). TOS and OSI were significantly higher, while TAS was significantly lower in the patients group. Pearson correlation revealed a positive correlation between HDL-C and arylesterase (P = 0.002, r = 0.379), and HDL-C and lactonase (P = 0.040, r = 0.366).

Conclusion: Reduced PON-1 activity is associated with T1DM, suggesting that enhancing PON-1 or reducing oxidative stress may help prevent diabetic complications and improve cardiovascular health.
Full-Text [PDF 237 kb]   (211 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2024/10/26 | Accepted: 2024/12/28 | Published: 2025/04/12

References
1. Ait-Taleb Lahsen H, Ragala MEA, El Abed H, Hajjaj S, El Makhtari R, Benani S, El Hilaly J, et al. Educational needs of type 1 diabetes mellitus T1DM children and adolescents in Morocco: A qualitative study. J Educ Health Promot. 2023;12:114. [DOI:10.4103/jehp.jehp_54_23] [PMID] []
2. Rodrigues Oliveira SM, Rebocho A, Ahmadpour E, Nissapatorn V, de Lourdes Pereira M. Type 1 diabetes mellitus: A review on advances and challenges in creating insulin producing devices. Micromachines. 2023; 14(1): 151.‏ [DOI:10.3390/mi14010151] [PMID] []
3. Aljubory SA, Alaubydi MA. The Relationship Between TLR 2 and 4 with Microbiota of Mouth and Nose in Hypersensitivity Type 1 Iraqi Patients. Iraqi J Sci. 2019;60(7):1452-59.‏ [DOI:10.24996/ijs.2019.60.7.5]
4. AL- Shammaree SA. Plasma visfatin levels and insulin sensitivity or resistance relationship in type 2 diabetes. J Contemp Med Sci. 2017; 3(12).‏ [DOI:10.22317/jcms.12201708]
5. Costa LG, Cole TB, Garrick J, Marsillach J, Furlong CE. Paraoxonase (PON1), detoxification
6. of nerve agents, and modulation of their toxicity. In: Handbook of Toxicology of Chemical Warfare Agents. Academic Press, 2020; 1179-90.‏
7. Ahmed MA, Wadood SA, Mahdi QA. Assessment of follicular fluid paraoxonase activity with pregnancy outcomes in women undergoing IVF/ICSI. Egyptian J Chemistry. 2021; 64(6): 2895-902.‏
8. Martín M, Hirschler V, Botta E, Brites F. Paraoxonase 1 as antioxidant enzyme in children. Chapter9 In: Pathology. Academic Press, 2020; 97-104. [DOI:10.1016/B978-0-12-815972-9.00009-3]
9. Durrington PN, Bashir B, Soran H. Paraoxonase 1 and atherosclerosis. Front Cardiovasc Med. 2023;10:1065967. [DOI:10.3389/fcvm.2023.1065967] [PMID] []
10. Leocádio PCL, Goulart AC, Santos IS, Lotufo PA, Bensenor IM, Alvarez-Leite JI. Lower paraoxonase 1 paraoxonase activity is associated with a worse prognosis in patients with non-ST-segment elevation myocardial infarction in long-term follow-up. Coron Artery Dis. 2022;33(7):515-522. [DOI:10.1097/MCA.0000000000001181] [PMID]
11. Dube P, Khalaf FK, DeRiso A, Mohammed CJ, Connolly JA, Battepati D, et al. Cardioprotective role for paraoxonase-1 in chronic kidney disease. Biomedicines. 2022;10(9): 2301.‏ [DOI:10.3390/biomedicines10092301] [PMID] []
12. Mendy A, Percy Z, Braun JM, Lanphear B, La Guardia MJ, Hale R, et al. Exposure to dust organophosphate and replacement brominated flame retardants during infancy and risk of subsequent adverse respiratory outcomes. Environ Res. 2023;235: 116560.‏ [DOI:10.1016/j.envres.2023.116560] [PMID] []
13. Benido Silva V, Chaves C, Oliveira JC, Palma I. Comparison of the accuracy of the Friedewald, Martin, and Sampson formulas to estimate very low levels of low-density lipoprotein cholesterol. Endokrynol Pol. 2023; 74(2): 203-10.‏ [DOI:10.5603/EP.a2023.0025] [PMID]
14. Sathyanarayanan N, Cannone G, Gakhar L, Katagihallimath N, Sowdhamini R, Ramaswamy S, Vinothkumar KR. Molecular basis for metabolite channeling in a ring opening enzyme of the phenylacetate degradation pathway. Nat Commun. 2019;10(1): 4127.‏ [DOI:10.1038/s41467-019-11931-1] [PMID] []
15. Żamojć K, Zdrowowicz M, Hać A, Witwicki M, Rudnicki-Velasquez PB, Wyrzykowski D, et al. Dihydroxy-substituted coumarins as fluorescent probes for nanomolar-level detection of the 4-amino-TEMPO spin label. Int J Mol Sci. 2019; 20(15): 3802. [DOI:10.3390/ijms20153802] [PMID] []
16. Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods. 2023;12(5):916. [DOI:10.3390/foods12050916] [PMID] []
17. Ozturk E, Balat O, Acılmıs YG, Ozcan C, Pence S, Erel Ö. Measurement of the placental total antioxidant status in preeclamptic women using a novel automated method. J Obstet Gynaecol Res. 2011;37(4):337-42. [DOI:10.1111/j.1447-0756.2010.01346.x] [PMID]
18. Flakoll PJ, Hill JO, Abumrad NN. Acute hyperglycemia enhances proteolysis in normal man. Am J Physiol.1993; 265 (5 Pt 1):E715-21. [DOI:10.1152/ajpendo.1993.265.5.E715] [PMID]
19. Mehta AR. Why does the plasma urea concentration increase in acute dehydration? Adv Physiol Educ. 2008;32(4):336. [DOI:10.1152/advan.90185.2008] [PMID]
20. Ude Ugomma A, Kalu Michael E, Ogbonna, Chinenye L. Usanga Victor U, Azi Simon O. Evaluation of Urea, Creatinine Levels, and Proteinuria among Obese Individuals within Abakaliki Metropolis. Nigerian J Basic Clin Sci. 2022; 19(2): 120-5.‏ [DOI:10.4103/njbcs.njbcs_74_21]
21. Kashima S, Inoue K, Matsumoto M. Low creatinine levels in diabetes mellitus among older individuals: the Yuport Medical Checkup Center Study. Sci Rep. 2021; 11(1): 15167. [DOI:10.1038/s41598-021-94441-9] [PMID] []
22. Golay A, Zech L, Shi MZ, Chiou YA, Reaven GM, Chen YD. High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL. J Clin Endocrinol Metab. 1987; 65(3): 512-8.‏ [DOI:10.1210/jcem-65-3-512] [PMID]
23. Liu Y, Gong R, Luo G, Li J, Li Q, Yang L, Wei X. Associations of triglycerides/high-density lipoprotein cholesterol ratio with insulin resistance, impaired glucose tolerance, and diabetes in American adults at different vitamin D3 levels. Front Endocrinol. 2022; 12: 735736.‏ [DOI:10.3389/fendo.2021.735736] [PMID] []
24. Jabeen WM, Jahangir B, Khilji S, Aslam A. Association of triglyceride glucose index and triglyceride HDL ratio with glucose levels, microvascular and macrovascular complications in Diabetes Mellitus Type-2. Pak J Med Sci. 2023; 39(5): 1255-9.‏ [DOI:10.12669/pjms.39.5.7389] [PMID] []
25. Abdulameer Hassan Abdulameer, Saba Zuhair Hussein. Assessment of Oxidative Stress Parameters for some of Baghdad City Fuel Stations Workers. Iraqi J Scie. 2023; 64(6): 2669-80.‏ [DOI:10.24996/ijs.2023.64.6.2]
26. Mubarak Ali MI, Yenzeel JH, Al-ansari HMS. Evaluation of oxidative stress and leptin level in samples of Iraqi obese women. Iraqi J Sci. 2020;61(7):1565-70.‏ [DOI:10.24996/ijs.2020.61.7.3]
27. Mohammed NA, Khaleel FM. Studying the Role of Heme Oxygenase-1 in Obese Patients. Baghdad Sci J. 2024: 21(7): 2246-54.‏ [DOI:10.21123/bsj.2023.8406]
28. Urner S, Ho F, Jha JC, Ziegler D, Jandeleit-Dahm K. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications. Antioxid Redox Signal. 2020;33(6):415-434.‏ [DOI:10.1089/ars.2020.8047] [PMID]
29. Erre GL, Bassu S, Giordo R, Mangoni AA, Carru C, Pintus G, Zinellu A. Association between Paraoxonase/Arylesterase Activity of Serum PON-1 Enzyme and Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Antioxidants (Basel). 2022;11(12):2317. [DOI:10.3390/antiox11122317] [PMID] []
30. Petrič B, Kunej T, Bavec A. A Multi-Omics Analysis of PON1 Lactonase Activity in Relation to Human Health and Disease. OMICS. 2021;25(1):38-51. [DOI:10.1089/omi.2020.0160] [PMID] []
31. Romani A, Trentini A, Flier WMV, Bellini T, Zuliani G, Cervellati C, Teunissen CE. Arylesterase Activity of Paraoxonase-1 in Serum and Cerebrospinal Fluid of Patients with Alzheimer's Disease and Vascular Dementia. Antioxidants (Basel). 2020;9(5):456. [DOI:10.3390/antiox9050456] [PMID] []
32. Ghudhaib KK, Khaleel FM. Evaluation of Antioxidants, Antibacterial and Antidiabetic Activities of Aqua-alcoholic Marjoram Extract. Baghdad Sci J. 2024; 21(8):2660-70. [DOI:10.21123/bsj.2024.9328]
33. Altuhafi A, Altun M, Hadwan MH. The Correlation between Selenium-Dependent Glutathione Peroxidase Activity and Oxidant/Antioxidant Balance in Sera of Diabetic Patients with Nephropathy. Rep Biochem Mol Biol. 2021;10(2):164-172. [DOI:10.52547/rbmb.10.2.164] [PMID] []
34. Zhou M, Liu XH, Liu QQ, Chen M, Bai H, Jiang CY, et al. Lactonase activity and status of paraoxonase 1 and oxidative stress in neonates of women with gestational diabetes mellitus. Pediatr Res. 2021;89(5):1192-1199. [DOI:10.1038/s41390-020-1023-2] [PMID]
35. Cheraghi M, Ahmadvand H, Maleki A, Babaeenezhad E, Shakiba S, Hassanzadeh F. Oxidative Stress Status and Liver Markers in Coronary Heart Disease. Rep Biochem Mol Biol. 2019;8(1):49-55.
36. Maradi R, Joshi V, Balamurugan V, Susan Thomas D, B Goud M. Importance of Microminerals for Maintaining Antioxidant Function After COVID-19-induced Oxidative Stress. Rep Biochem Mol Biol. 2022;11(3):479-486. [DOI:10.52547/rbmb.11.3.479] [PMID] []
37. Jiang J, Kang H, Song X, Huang S, Li S, Xu J. A model of interaction between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and apocynin analogues by docking method. Int J Mol Sci. 2013;14(1):807-17. [DOI:10.3390/ijms14010807] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb