1. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online. 2014;28(1):14-38. [
DOI:10.1016/j.rbmo.2013.08.011] [
PMID]
2. Busnelli A, Reschini M, Cardellicchio L, Vegetti W, Somigliana E, Vercellini P. How common is real repeated implantation failure? An indirect estimate of the prevalence. Reprod Biomed Online. 2020;40(1):91-7. [
DOI:10.1016/j.rbmo.2019.10.014] [
PMID]
3. Cimadomo D, Craciunas L, Vermeulen N, Vomstein K, Toth B. Definition, diagnostic and therapeutic options in recurrent implantation failure: an international survey of clinicians and embryologists. Hum Reprod. 2021;36(2):305-17. [
DOI:10.1093/humrep/deaa317] [
PMID]
4. Craciunas L, Gallos I, Chu J, Bourne T, Quenby S, Brosens JJ, Coomarasamy A. Conventional and modern markers of endometrial receptivity: a systematic review and meta-analysis. Hum Reprod Update. 2019;25(2):202-23. [
DOI:10.1093/humupd/dmy044] [
PMID]
5. Zahir M, Tavakoli B, Zaki-Dizaji M, Hantoushzadeh S, Majidi Zolbin M. Non-coding RNAs in Recurrent implantation failure. Clin Chim Acta. 2024;553:117731. [
DOI:10.1016/j.cca.2023.117731] [
PMID]
6. Razzaghi H, Khabbazpour M, Heidary Z, Heiat M, Shirzad Moghaddam Z, Derogar P, et al. Emerging Role of Tumor-Educated Platelets as a New Liquid Biopsy Tool for Colorectal Cancer. Arch Iran Med. 2023;26(8):447-54. [
DOI:10.34172/aim.2023.68] [
PMID] [
]
7. Azhari F, Pence S, Hosseini MK, Balci BK, Cevik N, Bastu E, Gunel T. The role of the serum exosomal and endometrial microRNAs in recurrent implantation failure. J Matern Fetal Neonatal Med. 2022;35(5):815-25. [
DOI:10.1080/14767058.2020.1849095] [
PMID]
8. Zeng H, Fu Y, Shen L, Quan S. MicroRNA signatures in plasma and plasma exosome during window of implantation for implantation failure following in-vitro fertilization and embryo transfer. Reprod Biol Endocrinol. 2021;19(1):180. [
DOI:10.1186/s12958-021-00855-5] [
PMID] [
]
9. Chen P, Li T, Guo Y, Jia L, Wang Y, Fang C. Construction of Circulating MicroRNAs-Based Non-invasive Prediction Models of Recurrent Implantation Failure by Network Analysis. Front Genet. 2021;12:712150. [
DOI:10.3389/fgene.2021.712150] [
PMID] [
]
10. Yang Q, Gu WW, Gu Y, Yan NN, Mao YY, Zhen XX, et al. Association of the peripheral blood levels of circulating microRNAs with both recurrent miscarriage and the outcomes of embryo transfer in an in vitro fertilization process. J Transl Med. 2018;16(1):186. [
DOI:10.1186/s12967-018-1556-x] [
PMID] [
]
11. Freis A, Keller A, Ludwig N, Meese E, Jauckus J, Rehnitz J, et al. Altered miRNA-profile dependent on ART outcome in early pregnancy targets Wnt-pathway. Reproduction. 2017;154(6):799-805. [
DOI:10.1530/REP-17-0396] [
PMID]
12. Huang J, Song N, Xia L, Tian L, Tan J, Chen Q, et al. Construction of lncRNA-related competing endogenous RNA network and identification of hub genes in recurrent implantation failure. Reprod Biol Endocrinol. 2021;19(1):108. [
DOI:10.1186/s12958-021-00778-1] [
PMID] [
]
13. Feng C, Shen JM, Lv PP, Jin M, Wang LQ, Rao JP, Feng L. Construction of implantation failure related lncRNA-mRNA network and identification of lncRNA biomarkers for predicting endometrial receptivity. Int J Biol Sci. 2018;14(10):1361-77. [
DOI:10.7150/ijbs.25081] [
PMID] [
]
14. Zhao H, Hu S, Qi J, Wang Y, Ding Y, Zhu Q, et al. Increased expression of HOXA11-AS attenuates endometrial decidualization in recurrent implantation failure patients. Mol Ther. 2022;30(4):1706-20. [
DOI:10.1016/j.ymthe.2022.01.036] [
PMID] [
]
15. Chen MY, Liao GD, Zhou B, Kang LN, He YM, Li SW. Genome-Wide Profiling of Long Noncoding RNA Expression Patterns in Women With Repeated Implantation Failure by RNA Sequencing. Reprod Sci. 2019;26(1):18-25. [
DOI:10.1177/1933719118756752] [
PMID]
16. Ahmadi M, Pashangzadeh S, Moraghebi M, Sabetian S, Shekari M, Eini F, et al. Construction of circRNA-miRNA-mRNA network in the pathogenesis of recurrent implantation failure using integrated bioinformatics study. J Cell Mol Med. 2022;26(6):1853-64. [
DOI:10.1111/jcmm.16586] [
PMID] [
]
17. Zhao H, Chen L, Shan Y, Chen G, Chu Y, Dai H, et al. Hsa_circ_0038383-mediated competitive endogenous RNA network in recurrent implantation failure. Aging (Albany NY). 2021;13(4):6076-90. [
DOI:10.18632/aging.202590] [
PMID] [
]
18. Zhou T, Ni T, Li Y, Zhang Q, Yan J, Chen ZJ. circFAM120A participates in repeated implantation failure by regulating decidualization via the miR-29/ABHD5 axis. Faseb j. 2021;35(9):e21872. [
DOI:10.1096/fj.202002298RR] [
PMID]
19. Zhao F, Guo Y, Shi Z, Wu M, Lv Y, Song W. hsa_circ_001946 elevates HOXA10 expression and promotes the development of endometrial receptivity via sponging miR-135b. Diagn Pathol. 2021;16(1):44. [
DOI:10.1186/s13000-021-01104-4] [
PMID] [
]
20. Ni T, Zhang Q, Li Y, Huang C, Zhou T, Yan J, Chen ZJ. CircSTK40 contributes to recurrent implantation failure via modulating the HSP90/AKT/FOXO1 axis. Mol Ther Nucleic Acids. 2021;26:208-21. [
DOI:10.1016/j.omtn.2021.06.021] [
PMID] [
]
21. Luo J, Zhu L, Zhou N, Zhang Y, Zhang L, Zhang R. Construction of Circular RNA-MicroRNA-Messenger RNA Regulatory Network of Recurrent Implantation Failure to Explore Its Potential Pathogenesis. Front Genet. 2020;11:627459. [
DOI:10.3389/fgene.2020.627459] [
PMID] [
]
22. Liu L, Li L, Ma X, Yue F, Wang Y, Wang L, et al. Altered Circular RNA Expression in Patients with Repeated Implantation Failure. Cell Physiol Biochem. 2017;44(1):303-13.
https://doi.org/10.1159/000445625 [
DOI:10.1159/000484887]
23. Zeraatiannejad M, Mokhtari MJ, Borhani-Haghighi A. Association of Circulating Circular RNAs (hg38_circ_0008980, and CircDLGAP4) in Diagnosis, Diseases Severity, and Prognosis of Ischemic Stroke. Rep Biochem Mol Biol. 2023;12(3):476-86. [
DOI:10.61186/rbmb.12.3.476] [
PMID] [
]
24. Saad El-Din S, Ahmed Rashed L, Eissa M, Eldemery AB, Abdelkareem Mohammed O, Abdelgwad M. Potential Role of circRNA-HIPK3/microRNA-124a Crosstalk in the Pathogenesis of Rheumatoid Arthritis. Rep Biochem Mol Biol. 2022;10(4):527-36. [
DOI:10.52547/rbmb.10.4.527] [
PMID] [
]
25. Zhong S, Feng J. CircPrimer 2.0: a software for annotating circRNAs and predicting translation potential of circRNAs. BMC Bioinformatics. 2022;23(1):215. [
DOI:10.1186/s12859-022-04705-y] [
PMID] [
]
26. Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ. 2017;64:69-126. [
DOI:10.1007/978-3-319-67591-6_4] [
PMID]
27. Arcuri F, Papa S, Carducci A, Romagnoli R, Liberatori S, Riparbelli MG, et al. Translationally controlled tumor protein (TCTP) in the human prostate and prostate cancer cells: expression, distribution, and calcium binding activity. Prostate. 2004;60(2):130-40. [
DOI:10.1002/pros.20054] [
PMID]
28. Cho H, Kim HK, Oh A, Jeong MG, Song J, Lee K, Hwang ES. dTBP2 attenuates severe airway inflammation by blocking inflammatory cellular network mediated by dTCTP. Biomed Pharmacother. 2021;144:112316. [
DOI:10.1016/j.biopha.2021.112316] [
PMID]
29. Shi P, Wang Z, Song H, Li Z, He B, Xu D, et al. Has_Circ_0030162: A Novel Epigenetic Biomarker and Potential Therapeutic Target for Esophageal Carcinoma. Available at SSRN 3253307. 2018. [
DOI:10.2139/ssrn.3253307]
30. Wang J, Shao J, Lu Y, Su W, Dong H, Wang P, et al. Screening Differential CircRNAs Expression Profiles Reveals the Regulatory Role of the has_circTPT1_003-has-miR-218-5p-CCNE2/SMC4 Signaling Axis in Bladder Carcinoma Progression. DNA Cell Biol. 2022;41(2):128-41. [
DOI:10.1089/dna.2021.0240] [
PMID]
31. Sugiaman-Trapman D, Vitezic M, Jouhilahti EM, Mathelier A, Lauter G, Misra S, et al. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics. 2018;19(1):181. [
DOI:10.1186/s12864-018-4564-6] [
PMID] [
]
32. Guo L, Liu D. Identification of RFX5 as prognostic biomarker and associated with immune infiltration in stomach adenocarcinoma. Eur J Med Res. 2022;27(1):164. [
DOI:10.1186/s40001-022-00794-w] [
PMID] [
]
33. Cui Z, Fu Y, Zhou M, Feng H, Zhang L, Ma S, Chen C. Pan-cancer investigation of RFX family and associated genes identifies RFX8 as a therapeutic target in leukemia. Heliyon. 2024;10(15):e35368. [
DOI:10.1016/j.heliyon.2024.e35368] [
PMID] [
]
34. Fan R, Hu D, Wang M, Zheng H, Zhou Y, Zhang L. Integrated analysis of circRNA-associated ceRNA network in ischemic stroke. Front Genet. 2023;14:1153518. [
DOI:10.3389/fgene.2023.1153518] [
PMID] [
]
35. Li T, Wang T, Yan L, Ma C. Identification of potential novel biomarkers for abdominal aortic aneurysm based on comprehensive analysis of circRNA-miRNA-mRNA networks. Exp Ther Med. 2021;22(6):1468. [
DOI:10.3892/etm.2021.10903] [
PMID] [
]
36. Hosseini MK, Gunel T, Gumusoglu E, Benian A, Aydinli K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol Med Rep. 2018;17(4):4941-52. [
DOI:10.3892/mmr.2018.8530] [
PMID] [
]
37. Mavreli D, Theodora M, Avgeris M, Papantoniou N, Antsaklis P, Daskalakis G, Kolialexi A. First Trimester Maternal Plasma Aberrant miRNA Expression Associated with Spontaneous Preterm Birth. Int J Mol Sci. 2022;23(23). [
DOI:10.3390/ijms232314972] [
PMID] [
]
38. Kondracka A, Stupak A, Rybak-Krzyszkowska M, Kondracki B, Oniszczuk A, Kwaśniewska A. MicroRNA Associations with Preterm Labor-A Systematic Review. Int J Mol Sci. 2024;25(7). [
DOI:10.3390/ijms25073755] [
PMID] [
]
39. Xueya Z, Yamei L, Sha C, Dan C, Hong S, Xingyu Y, Weiwei C. Exosomal encapsulation of miR-125a-5p inhibited trophoblast cell migration and proliferation by regulating the expression of VEGFA in preeclampsia. Biochem Biophys Res Commun. 2020;525(3):646-53. [
DOI:10.1016/j.bbrc.2020.02.137] [
PMID]
40. Hu Y, Liu CM, Qi L, He TZ, Shi-Guo L, Hao CJ, et al. Two common SNPs in pri-miR-125a alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population. RNA Biol. 2011;8(5):861-72. [
DOI:10.4161/rna.8.5.16034] [
PMID]