1. Ryan KS, Kliegman RM. Jaundice and Hyperbilirubinemia in the Newborn. 21st ed. Kliegman R, Geme JW St., editors. Elsevier Inc; 2019.
2. Gomella TL, Eyal FG, Bany-Mohammed F. Gomella's Neonatology: Management, Procedures, On-Call Problems, Diseases, and Drugs. 8e ed. New York, NY: McGraw-Hill Education; 2020.
3. Yu TC, Nguyen C, Ruiz N, Zhou S, Zhang X, Böing EA, Tan H. Prevalence and burden of illness of treated hemolytic neonatal hyperbilirubinemia in a privately insured population in the United States. BMC Pediatr. 2019;19(1):53. [
DOI:10.1186/s12887-019-1414-x] [
PMID] [
]
4. Mohammad LY, Armishty FS, Bamarny RM, Yousif IR, Mohammed RA, Abdulqadir HH, Arif IM. The Relationship between Neonatal Jaundice and Maternal and Neonatal Factors in Zakho City. Passer J Basic Appl Sci. 2024;6(2):259-64. [
DOI:10.24271/psr.2024.432697.1459]
5. Wang J, Guo G, Li A, Cai WQ, Wang X. Challenges of phototherapy for neonatal hyperbilirubinemia (Review). Exp Ther Med. 2021;21(3):231. [
DOI:10.3892/etm.2021.9662] [
PMID] [
]
6. Olusanya BO, Teeple S, Kassebaum NJ. The Contribution of Neonatal Jaundice to Global Child Mortality: Findings From the GBD 2016 Study. Pediatrics. 2018;141(2):e20171471. [
DOI:10.1542/peds.2017-1471] [
PMID]
7. Olusanya BO, Kaplan M, Hansen TWR. Neonatal hyperbilirubinemia: a global perspective. Lancet Child Adolesc Heal. 2018;2(8):610-20. [
DOI:10.1016/S2352-4642(18)30139-1] [
PMID]
8. GBD 2016 Mortality Collaborators. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1084-150. [
DOI:10.1016/S0140-6736(17)31833-0] [
PMID]
9. Surya Dewi AK, Kardana IM, Suarta K. Efektivitas Fototerapi Terhadap Penurunan Kadar Bilirubin Total pada Hiperbilirubinemia Neonatal di RSUP Sanglah. Sari Pediatr. 2016;18(2):81-86. [
DOI:10.14238/sp18.2.2016.81-6]
10. Rahardjani KB, Agung R, Wijayahadi N. Pengaruh Kadar Vitamin C dan Vitamin E Terhadap Peningkatan Kadar Bilirubin pada Neonatus. Sari Pediatr. 2016;12(1):30-35. [
DOI:10.14238/sp12.1.2010.30-5]
11. Norman M, Åberg K, Holmsten K, Weibel V, Ekéus C. Predicting Nonhemolytic Neonatal Hyperbilirubinemia. Pediatrics. 2015;136(6):1087-94. [
DOI:10.1542/peds.2015-2001] [
PMID]
12. Raghavan A. Bilirubin Biochemistry Metabolism and Measurement. In: Chess PRB, editor. Avery's Neonatology Board Review. Elsevier; 2019.262-3.
13. Osiak W, Wątroba S, Kapka-Skrzypczak L, Kurzepa J. Two Faces of Heme Catabolic Pathway in Newborns: A Potential Role of Bilirubin and Carbon Monoxide in Neonatal Inflammatory Diseases. Oxid Med Cell Longev. 2020;2020:7140496. [
DOI:10.1155/2020/7140496] [
PMID] [
]
14. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114(1):297-316. [
DOI:10.1542/peds.114.1.297] [
PMID]
15. Jyotsna S, Amit A, Kumar A. Study of serum zinc in low birth weight neonates and its relation with maternal zinc. J Clin Diagn Res. 2015;9(1):SC01-3. [
DOI:10.7860/JCDR/2015/10449.5402] [
PMID] [
]
16. Mandlecha TH, Mundada SM, Gire PK, Reddy N, Khaire P, Joshi T, Pawar S. Effect of Oral Zinc Supplementation on Serum Bilirubin Levels in Term Neonates With Hyperbilirubinemia Undergoing Phototherapy: A Double-blind Randomized Controlled Trial. Indian Pediatr. 2023;60(12):991-995. [
DOI:10.1007/s13312-023-3061-4] [
PMID]
17. Wong RJ, Vreman HJ, Schulz S, Kalish FS, Pierce NW, Stevenson DK. In vitro inhibition of heme oxygenase isoenzymes by metalloporphyrins. J Perinatol. 2011;31 Suppl 1:S35-41. [
DOI:10.1038/jp.2010.173] [
PMID]
18. Mhillaj E, Cuomo V, Trabace L, Mancuso C. The Heme Oxygenase/Biliverdin Reductase System as Effector of the Neuroprotective Outcomes of Herb-Based Nutritional Supplements. Front Pharmacol. 2019;10:1298. [
DOI:10.3389/fphar.2019.01298] [
PMID] [
]
19. Kalvandi G, Shokri M, Tavan H. The Therapeutic Effect of Zinc Sulfate in Iranian Neonates With Hyperbilirubinemia: A Systematic Review and Meta-Analysis. J Pediatr Rev. 2020;8(3):145-52. [
DOI:10.32598/jpr.8.3.834.1]
20. Vítek L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front Pharmacol. 2012;3:55. [
DOI:10.3389/fphar.2012.00055] [
PMID] [
]
21. Maradi R, Joshi V, Balamurugan V, Thomas DS, Goud MB. Importance of Microminerals for Maintaining Antioxidant Function After COVID-19-induced Oxidative Stress. Reports Biochem Mol Biol. 2022;11(3):479-86. [
DOI:10.52547/rbmb.11.3.479] [
PMID] [
]
22. Shafiee SM, Amiri F, Yousefi F, Akbari Nasab A. Pro -Oxidant/ Antioxidant Balance Correlates with Red Blood Cell Indices and Anemia Severity in the Anemic Patients. Reports Biochem Mol Biol. 2024;12(4):609-18. [
DOI:10.61186/rbmb.12.4.609] [
PMID] [
]
23. Boskabadi H, Maamouri G, Akhondian J, Ashrafzadeh F, Boskabadi A, Faramarzi R, et al. Comparison of birth weights of neonates of mothers receiving vs. not receiving zinc supplement at pregnancy. BMC Pregnancy Childbirth. 2021;21:187. [
DOI:10.1186/s12884-021-03598-8] [
PMID] [
]
24. Faal G, Masjedi HK, Sharifzadeh G, Kiani Z. Efficacy of zinc sulfate on indirect hyperbilirubinemia in premature infants admitted to neonatal intensive care unit: a double-blind, randomized clinical trial. BMC Pediatr. 2020;20(1):130. [
DOI:10.1186/s12887-020-02025-9] [
PMID] [
]
25. Khoshnevisasl P, Sadeghzadeh M, Kamali K, Hasanlo M. The effect of symbiotic in the treatment of infantile colic: A double-blind, randomized, placebo-controlled clinical trial. J Res Med Sci. 2022;27:42. [
DOI:10.4103/jrms.jrms_128_21] [
PMID] [
]
26. Beiranvand S, Hosseinabadi R, Firouzi M, Almasian M, Anbari K. Impact of Combined Oral Zinc Sulfate and Phototherapy on Serum Bilirubin Levels in the Term Neonates with Jaundice. Iran J Neonatol. 2018;9(3):20-5.
27. Mennillo E, Yang X, Weber A, Chen S, Maruo Y, Tukey RH. Tissue‐specific Humanized Models Expressing Human UGT1A1. FASEB J. 2020;34(S1):1-1. [
DOI:10.1096/fasebj.2020.34.s1.06589]
28. Zhu YD, Guan XQ, Chen J, Peng S, Finel M, Zhao YY, et al. Neobavaisoflavone Induces Bilirubin Metabolizing Enzyme UGT1A1 via PPARα and PPARγ. Front Pharmacol. 2021;11:628314. [
DOI:10.3389/fphar.2020.628314] [
PMID] [
]
29. Su W, Feng M, Liu Y, Cao R, Liu Y, Tang J, et al. ZnT8 Deficiency Protects From APAP-Induced Acute Liver Injury by Reducing Oxidative Stress Through Upregulating Hepatic Zinc and Metallothioneins. Front Pharmacol. 2021;12:721471. [
DOI:10.3389/fphar.2021.721471] [
PMID] [
]
30. Mohammadi H, Talebi S, Ghavami A, Rafiei M, Sharifi S, Faghihimani Z, et al. Effects of zinc supplementation on inflammatory biomarkers and oxidative stress in adults: A systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol. 2021;68:126857. [
DOI:10.1016/j.jtemb.2021.126857] [
PMID]
31. Domellöf M, Szitanyi P, Simchowitz V, Franz A, Mimouni F. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Iron and trace minerals. Clin Nutr. 2018;37(6 Pt B):2354-9. [
DOI:10.1016/j.clnu.2018.06.949] [
PMID]
32. Ahmed Mustafa Z, Hamed Ali R, Rostum Ali D, Abdulkarimi R, Abdulkareem NK, Akbari A. The combination of ginger powder and zinc supplement improves the fructose‐induced metabolic syndrome in rats by modulating the hepatic expression of NF‐κB, mTORC1, PPAR‐α SREBP‐1c, and Nrf2. J Food Biochem. 2021;45(1) :e13546. [
DOI:10.1111/jfbc.13546] [
PMID]
33. Yao X, Liu R, Li X, Li Y, Zhang Z, Huang S, et al. Zinc, Selenium and Chromium Supplementation Improves Insulin Resistance by Preventing Hepatic Endoplasmic Reticulum Stress in Diet-Induced Gestational Diabetes Rats. J Nutr Biochem. 2021;98:108810. [
DOI:10.1016/j.jnutbio.2021.108810] [
PMID]