1. Lin X, Zhao N, Yan P, Hu H, Xu F-J. The shape and size effects of polycation functionalized silica nanoparticles on gene transfection. Acta biomaterialia. 2015;11:381-392. [
DOI:10.1016/j.actbio.2014.09.004] [
PMID]
2. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nature Reviews Genetics. 2014;15(8):541-555. [
DOI:10.1038/nrg3763] [
PMID]
3. Cotrim AP, Baum BJ. Gene therapy: some history, applications, problems, and prospects. Toxicol pathol. 2008;36(1):97-103. [
DOI:10.1177/0192623307309925] [
PMID]
4. Breen A, Strappe P, Kumar A, O'Brien T, Pandit A. Optimization of a fibrin scaffold for sustained release of an adenoviral gene vector. J Biomed Mater Res A. 2006;78(4):702-8. [
DOI:10.1002/jbm.a.30735] [
PMID]
5. Lilley CE, Branston RH, Coffin RS. Herpes simplex virus vectors for the nervous system. Curr Gene Ther. 2001;1(4):339-58. [
DOI:10.2174/1566523013348346] [
PMID]
6. Nimesh S, Kumar R, Chandra R. Novel polyallylamine-dextran sulfate-DNA nanoplexes: highly efficient non-viral vector for gene delivery. Int J Pharm. 2006;320(1-2):143-9. [
DOI:10.1016/j.ijpharm.2006.03.050] [
PMID]
7. Ahn HH, Lee MS, Cho MH, Shin YN, Lee JH, Kim KS, et al. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;313-314:116-120. [
DOI:10.1016/j.colsurfa.2007.04.156]
8. Klemm DB, Heublein B, Fink H-P, A Bohn.Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition. 2005;44(22):3358-3393. [
DOI:10.1002/anie.200460587] [
PMID]
9. Kamel S, Ali N, Jahangir K, Shah S, El-Gendy A. Pharmaceutical significance of cellulose: a review. Express Polym Lett. 2008;2(11):758-778. [
DOI:10.3144/expresspolymlett.2008.90]
10. Habibi Y. Key advances in the chemical modification of nanocelluloses. Chem Soc Rev. 2014;43(5):1519-42. [
DOI:10.1039/C3CS60204D] [
PMID]
11. Bisht HS, Manickam DS, You Y, Oupicky D. Temperature-controlled properties of DNA complexes with poly (ethylenimine)-g raft-poly (N-isopropylacrylamide). Biomacromolecules. 2006;7(4):1169-78. [
DOI:10.1021/bm0509927] [
PMID]
12. Jiang X, Lok MC, Hennink WE. Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjug Chem. 2007;18(6):2077-84. [
DOI:10.1021/bc0701186] [
PMID]
13. Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly (ethylene imine) and its derivatives. J Gene Med. 2005;7(8):992-1009. [
DOI:10.1002/jgm.773] [
PMID]
14. Bonnet M-E, Erbacher P, Bolcato-Bellemin A-L. Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm Res. 2008;25(12):2972-82. [
DOI:10.1007/s11095-008-9693-1] [
PMID]
15. Ntoutoume GMN, Granet R, Mbakidi JP, Brégier F, Léger DY, Fidanzi-Dugas C, et al. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorg Med Chem Lett. 2016;26(3):941-945. [
DOI:10.1016/j.bmcl.2015.12.060] [
PMID]
16. Ntoutoume GMN, Grassot V, Brégier F, Chabanais J, Petit J-M, Granet R, et al. PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents-Synthesis, physicochemical characterization and in vitro evaluation. Carbohydr Polym. 2017;164:258-267. [
DOI:10.1016/j.carbpol.2017.02.004] [
PMID]
17. Fredon E, Granet R, Zerrouki R, Krausz P, Saulnier L, Thibault J, et al. Hydrophobic films from maize bran hemicelluloses. Carbohydrate polymers. 2002;49(1):1-12. [
DOI:10.1016/S0144-8617(01)00312-5]
18. Buchman YK, Lellouche E, Zigdon S, Bechor M, Michaeli S, Lellouche J-P. Silica nanoparticles and polyethyleneimine (PEI)-mediated functionalization: a new method of PEI covalent attachment for siRNA delivery applications. Bioconjug Chem. 2013;24(12):2076-87. [
DOI:10.1021/bc4004316] [
PMID]
19. Jahan MS, Saeed A, He Z, Ni Y. Jute as raw material for the preparation of microcrystalline cellulose. Cellulose. 2011;18(2):451-459. [
DOI:10.1007/s10570-010-9481-z]
20. Dong S, Cho HJ, Lee YW, Roman M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules. 2014;15(5):1560-7. [
DOI:10.1021/bm401593n] [
PMID]
21. Sofla MRK, Brown RJ, Tsuzuki T, Rainey TJ. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016;7(3):035004. [
DOI:10.1088/2043-6262/7/3/035004]
22. Sharma H, Carmichael E, Muhamad M, McCall D, Andrews F, Lyons G, et al. Biorefining of perennial ryegrass for the production of nanofibrillated cellulose. RSC Advances. 2012;2(16):6424-6437. [
DOI:10.1039/c2ra20716h]
23. Hu H, Yuan W, Liu F-S, Cheng G, Xu F-J, Ma J. Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS applied materials & interfaces. 2015;7(16):8942-51. [
DOI:10.1021/acsami.5b02432] [
PMID]
24. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews. 2010;110(6):3479-3500. [
DOI:10.1021/cr900339w] [
PMID]
25. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal. 2014;59:302-325. [
DOI:10.1016/j.eurpolymj.2014.07.025]
26. Grate JW, Mo K-F, Shin Y, Vasdekis A, Warner MG, Kelly RT, et al. Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments. Bioconjug chem. 2015;26(3):593-601. [
DOI:10.1021/acs.bioconjchem.5b00048] [
PMID]
27. Socrates G. Hydration study of acetaldehyde and propionaldehyde. The Journal of Organic Chemistry. 1969;34(10):2958-2961. [
DOI:10.1021/jo01262a033]
28. Sirviö JA, Liimatainen H, Niinimäki J, Hormi O. Sustainable packaging materials based on wood cellulose. RSC advances. 2013;3(37):16590-6. [
DOI:10.1039/c3ra43264e]
29. Kim T-H, Seo HW, Han J, Ko KS, Choi JS. Polyethylenimine-grafted polyamidoamine conjugates for gene delivery with high efficiency and low cytotoxicity. Macromolecular Research. 2014;22(7):757-764. [
DOI:10.1007/s13233-014-2108-8]
30. Zhao J, Li Q, Zhang X, Xiao M, Zhang W, Lu C. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites. Carbohydr Polym. 2017;157:1419-1425. [
DOI:10.1016/j.carbpol.2016.11.025] [
PMID]
31. Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, et al. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules. 2008;41(23):9345-9351. [
DOI:10.1021/ma801110g]
32. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613-8. [
DOI:10.1073/pnas.0801763105] [
PMID] [
PMCID]
33. Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS applied materials & interfaces. 2010;2(10):2924-2932. [
DOI:10.1021/am1006222] [
PMID]
34. Kim U-J, Kuga S, Wada M, Okano T, Kondo T. Periodate oxidation of crystalline cellulose. Biomacromolecules. 2000;1(3):488-492. [
DOI:10.1021/bm0000337] [
PMID]
35. Julien S, Chornet E, Overend R. Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis. 1993;27(1):25-43. [
DOI:10.1016/0165-2370(93)80020-Z]
36. Zhao Q-Q, Chen J-L, Lv T-F, He C-X, Tang G-P, Liang W-Q, et al. N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biol Pharm Bull. 2009;32(4):706-10. [
DOI:10.1248/bpb.32.706] [
PMID]
37. Zhang X-Q, Wang X-L, Zhang P-C, Liu Z-L, Zhuo R-X, Mao H-Q, et al. Galactosylated ternary DNA/polyphosphoramidate nanoparticles mediate high gene transfection efficiency in hepatocytes. Journal of controlled release. 2005;102(3):749-763. [
DOI:10.1016/j.jconrel.2004.10.024] [
PMID]
38. Ge X, Feng J, Chen S, Zhang C, Ouyang Y, Liu Z, et al. Biscarbamate cross-linked low molecular weight Polyethylenimine polycation as an efficient intra-cellular delivery cargo for cancer therapy. Journal of nanobiotechnology. 2014;12(1):13. [
DOI:10.1186/1477-3155-12-13] [
PMID] [
PMCID]
39. Sarkar K, Debnath M, Kundu P. Preparation of low toxic fluorescent chitosan-graft-polyethyleneimine copolymer for gene carrier. Carbohydrate polymers. 2013;92(2):2048-2057. [
DOI:10.1016/j.carbpol.2012.11.067] [
PMID]
40. Ping Y, Liu CD, Tang GP, Li JS, Li J, Yang WT, et al. Functionalization of chitosan via atom transfer radical polymerization for gene delivery. Advanced Functional Materials. 2010;20(18):3106-3116. [
DOI:10.1002/adfm.201000177]
41. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121-31. [
DOI:10.1016/S0142-9612(02)00445-3]
42. Cai J, Yue Y, Rui D, Zhang Y, Liu S, Wu C. Effect of chain length on cytotoxicity and endocytosis of cationic polymers. Macromolecules. 2011;44(7):2050-2057. [
DOI:10.1021/ma102498g]
43. Malamas AS, Gujrati M, Kummitha CM, Xu R, Lu Z-R. Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery. J Control Release. 2013;171(3):296-307. [
DOI:10.1016/j.jconrel.2013.06.019] [
PMID] [
PMCID]
44. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly (ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005;11(6):990-5. [
DOI:10.1016/j.ymthe.2005.02.010] [
PMID]
45. Zintchenko A, Philipp A, Dehshahri A, Wagner E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem. 2008;19(7):1448-55. [
DOI:10.1021/bc800065f] [
PMID]