Volume 9, Issue 3 (Vol.9 No.3 Oct 2020)                   rbmb.net 2020, 9(3): 291-296 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nourolahzadeh Z, Houshmand S M, Mostafa Mohammad F, Ghorbian S. Correlation between Lsp1 (Rs3817198) and Casc (Rs4784227) Polymorphisms and the Susceptibility to Breast Cancer. rbmb.net 2020; 9 (3) :291-296
URL: http://rbmb.net/article-1-436-en.html
Department of Molecular Biology, Ahar Branch Islamic Azad University, Ahar, Iran & Knowledge University, Erbil Kurdistan region, Iraq.
Abstract:   (3299 Views)
Background: Breast cancer is classified as one of the common cancers among women worldwide. Within numerous genetic factors involved in the development of breast cancer, lsp1 and casc genes are both located on breast cancer susceptibility locus. While the SNP rs3817198 in lsp1 gene has a twilight association with breast cancer in different populations, casc rs4784227 polymorphisms have been reported to associate with breast tumor appearance in Asian, European, and African ancestry populations. The present report was designed a case-control group aimed at assessing the association of these two SNPs with breast cancer risk in the Iranian population.

Methods: In the case-control study of rs3817198 and rs4784227 polymorphisms in 100 women with breast cancer and 100 healthy women were examined by Tetra Arms PCR. Data collected using SPSS software and chi-square test and correlation coefficient were used for statistical analysis.

Results: The results of current study showed that the Chi-square of lsp1 rs3817198 and casc rs4784227 polymorphism genotypes in breast cancer, were reported to be 51.613 and 47.920, respectively. Also there has been a significance level of both polymorphisms resulting in the frequency of genotypes in these two polymorphisms between case and control group.

Conclusions: Our finding thus suggested that in both polymorphisms, homozygote genotype showed strong correlation with cancer susceptibility. While, TT genotype in lsp1 rs3817198 showed significant association with pathogenic properties, in the case of casc rs4784227 genotypes CC, and in second place, TT showed similar correlation.
Full-Text [PDF 182 kb]   (1505 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2019/12/22 | Accepted: 2020/01/13 | Published: 2020/12/1

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. [DOI:10.3322/caac.21492] [PMID]
2. Nafissi N, Khayamzadeh M, Zeinali Z, Pazooki D, Hosseini M, Akbari ME. Epidemiology and histopathology of breast cancer in Iran versus other Middle Eastern countries. Middle East Special Report. 2018;9(3):243-251.
3. Ripperger T, Gadzicki D, Meindl A, Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet. 2009;17(6):722-31. [DOI:10.1038/ejhg.2008.212] [PMID] [PMCID]
4. Fanale D, Amodeo V, Corsini L, Rizzo S, Bazan V, Russo A. Breast cancer genome-wide association studies: there is strength in numbers. Oncogene. 2012;31(17):2121-8. [DOI:10.1038/onc.2011.408] [PMID]
5. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. Genomewide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087-1093. [DOI:10.1038/nature05887] [PMID] [PMCID]
6. Gorodnova TV, Kuligina ES, Yanus GA, Katanugina AS, Abysheva SN, Togo AV, et al. Distribution of FGFR2, TNRC9, MAP3K1, LSP1, and 8q24 alleles in genetically enriched breast cancer patients versus elderly tumor-free women. Cancer genetics and cytogenetics. 2010;199(1):69-72. [DOI:10.1016/j.cancergencyto.2010.01.020] [PMID]
7. Howard TH, Hartwig J, Cunningham C. Lymphocyte-specific protein 1 expression in eukaryotic cells reproduces the morphologic and motile abnormality of NAD 47/89 neutrophils. Blood. 1998;91(12):4786-95. .412k25_4786_4795 [DOI:10.1182/blood.V91.12.4786] [PMID]
8. Jiang Y, Han J, Liu J, Zhang G, Wang L, Liu F, et al. Risk of genome-wide association study newly identified genetic variants for breast cancer in Chinese women of Heilongjiang Province. Breast Cancer Res Treat. 2011;128(1):251-7. [DOI:10.1007/s10549-010-1327-8] [PMID]
9. Tan T, Zhang K, Sun WC. Genetic variants of ESR1 and SGSM3 are associated with the susceptibility of breast cancer in the Chinese population. Breast Cancer. 2017;24(3):369-374. https://doi.org/10.1007/s12282-016-0724-1 [DOI:10.1007/s12282-016-0712-5]
10. Tang J, Li H, Luo J, Mei H, Peng L, Li X. The LSP1 rs3817198 T> C polymorphism contributes to increased breast cancer risk: a meta-analysis of twelve studies. Oncotarget. 2016;7(39):63960-63967. [DOI:10.18632/oncotarget.11741] [PMID] [PMCID]
11. Cowper-Sal R, Zhang X, Wright JB, Bailey SD, Cole MD, Eeckhoute J, et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nature genetics. 2012;44(11):1191-1198. [DOI:10.1038/ng.2416] [PMID] [PMCID]
12. Long J, Cai Q, Shu X-O, Qu S, Li C, Zheng Y, et al. Identification of a functional genetic variant at 16q12. 1 for breast cancer risk: results from the Asia Breast Cancer Consortium. PLoS Genet. 2010;6(6):e1001002. [DOI:10.1371/journal.pgen.1001002] [PMID] [PMCID]
13. Ruiz-Narváez EA, Rosenberg L, Cozier YC, Cupples LA, Adams-Campbell LL, Palmer JR. Polymorphisms in the TOX3/LOC643714 locus and risk of breast cancer in African-American women. Cancer Epidemiol Biomarkers Prev. 2010;19(5):1320-7. [DOI:10.1158/1055-9965.EPI-09-1250] [PMID] [PMCID]
14. Tajbakhsh A, Farjami Z, Darroudi S, Ayati SH, Vakili F, Asghari M, et al. Association of rs4784227-CASC16 (LOC643714 locus) and rs4782447-ACSF3 polymorphisms and their association with breast cancer risk among Iranian population. EXCLI J. 2019;18:429-438.
15. Donepudi MS, Kondapalli K, Amos SJ, Venkanteshan P. Breast cancer statistics and markers. J Cancer Res Ther. 2014;10(3):506-11.
16. Holmes AK, Koller KR, Kieszak SM, Sjodin A, Calafat AM, Sacco FD, et al. Case-control study of breast cancer and exposure to synthetic environmental chemicals among Alaska Native women. Int J Circumpolar Health. 2014;73(1):25760. [DOI:10.3402/ijch.v73.25760] [PMCID]
17. Tang M, Zhao M, Shanshan Z, Chen K, Zhang C, Liu W. Assessing the underlying breast cancer risk of Chinese females contributed by dietary intake of residual DDT from agricultural soils. Environ Int. 2014;73:208-15. [DOI:10.1016/j.envint.2014.08.001] [PMID]
18. Izano M, Satariano WA, Hiatt RA, Braithwaite D. Smoking and mortality after breast cancer diagnosis: the health and functioning in women study. Cancer Med. 2015;4(2):315-24. [DOI:10.1002/cam4.359] [PMID] [PMCID]
19. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58, 209 women with breast cancer and 101, 986 women without the disease. Lancet. 2001;358(9291):1389-99. [DOI:10.1016/S0140-6736(01)06524-2]
20. Dossus L, Benusiglio PR. Lobular breast cancer: incidence and genetic and non-genetic risk factors. Breast Cancer Research. 2015;17(1):37. [DOI:10.1186/s13058-015-0546-7] [PMID] [PMCID]
21. Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40(1):17-22. [DOI:10.1038/ng.2007.53] [PMID]
22. Kooshyar MM, Nassiri M, Mahdavi M, Doosti M, Parizadeh A. Identification of germline BRCA1 mutations among breast cancer families in Northeastern Iran. Asian Pac J Cancer Prev. 2013;14(7):4339-45. [DOI:10.7314/APJCP.2013.14.7.4339] [PMID]
23. Mahdi KM, Nassiri MR, Nasiri K. Hereditary genes and SNPs associated with breast cancer. Asian Pac J Cancer Prev. 2013;14(6):3403-9. [DOI:10.7314/APJCP.2013.14.6.3403] [PMID]
24. Dumitrescu R, Cotarla I. Understanding breast cancer risk‐where do we stand in 2005?. J Cell Mol Med. 2005;9(1):208-21. [DOI:10.1111/j.1582-4934.2005.tb00350.x] [PMID] [PMCID]
25. Lanigan F, O'connor D, Martin F, Gallagher W. Molecular links between mammary gland development and breast cancer. Cell Mol Life Sci. 2007;64(24):3159-84. [DOI:10.1007/s00018-007-7386-2] [PMID]
26. Chen H, Qi X, Qiu P, Zhao J. Correlation between LSP1 polymorphisms and the susceptibility to breast cancer. Int J Clin Exp Pathol. 2015;8(5):5798-802.
27. Chen M-B, Li C, Shen W-X, Guo Y-J, Shen W, Lu P-H. Association of a LSP1 gene rs3817198 T> C polymorphism with breast cancer risk: evidence from 33,920 cases and 35,671 controls. Molecular biology reports. 2011;38(7):4687-95. [DOI:10.1007/s11033-010-0603-3] [PMID]
28. Friedman LC, Nelson DV, Baer PE, Lane M, Smith FE. Adjustment to breast cancer. Journal of Psychosocial Oncology. 1991;8(4):27-40. [DOI:10.1300/J077v08n04_02]
29. Han YJ, Zhang J, Zheng Y, Huo D, Olopade OI. Genetic and epigenetic regulation of TOX3 expression in breast cancer. PLOS one. 2016;11(11):e0165559. [DOI:10.1371/journal.pone.0165559] [PMID] [PMCID]
30. Katika MR, Hurtado A. A functional link between FOXA1 and breast cancer SNPs. Breast Cancer Research. 2013;15(1):303. [DOI:10.1186/bcr3360] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb