1. Pollack M. Pseudomonas aeruginosa. Principles and Practice of Infectious Diseases. 4th ed. New York: Churchill Livingstone, 1995:1980-2003.
2. Imai E, Ueda M, Kanao K, Miyaki K, Kubota T, Kitajima M. Surgical site infection surveillance after open gastrectomy and risk factors for surgical site infection. J Infect Chemother. 2005;11(3):141-5. [
DOI:10.1007/s10156-005-0379-X] [
PMID]
3. Nicastri E, Petrosillo N, Martini L, Larosa M, Gesu G.P, Ippolito G. Prevalence of nosocomial infections in 15 Italian hospitals: first point prevalance study for the INF-NOS project. Infection. 2003;31 Suppl 2:10-5.
4. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother. 1999;43(6):1379-82. [
DOI:10.1128/AAC.43.6.1379] [
PMID] [
PMCID]
5. Magiorakos A.P, Srinivasan A, Carey RB, Carmeli Y, Falagas M.E, Giske C.G, et al. Multidrug-resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin Microbiol Infect. 2012:18(3):268-81. [
DOI:10.1111/j.1469-0691.2011.03570.x] [
PMID]
6. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417-33. [
DOI:10.1128/MMBR.00016-10] [
PMID] [
PMCID]
7. Wardhana A, Djan R, Halim Z, disasters f. Bacterial and antimicrobial susceptibility profile and the prevalence of sepsis among burn patients at the burn unit of Cipto Mangunkusumo Hospital. 2017;30(2):107-115. [
DOI:10.26226/morressier.594bbebed462b8028d893d64]
8. Cambre S, Campo J, Botka B, van Werveke W, Obrzut J, Wenseleers W, et al. Controlling the Inner Dielectric Environment of Carbon Nanotubes to Tune Their Optical Properties. The Electrochemical Society. 235th ECS Meeting 2019; 9:699-699.
9. Saliev T. The advances in biomedical applications of carbon nanotubes. Journal of Carbon Research. 2019;5(2):29. [
DOI:10.3390/c5020029]
10. Thorpe TC, Wilson M.L, Turner J.E, DiGuiseppi J.L, Willert M, Mirrett S, et al. BacT/Alert: an automated colorimetric microbial detection system. J clin microbiol. 1990;28(7):1608-12. [
DOI:10.1128/JCM.28.7.1608-1612.1990] [
PMID] [
PMCID]
11. Sader HS, Castanheira M, Mendes RE, Flamm RK, Farrell DJ, Jones RNJAa, et al. Ceftazidime-avibactam activity against multidrug-resistant Pseudomonas aeruginosa isolated in US medical centers in 2012 and 2013. Indian Journal of Pathology and Microbiology. 2015;59(6):3656-3659. [
DOI:10.1128/AAC.05024-14] [
PMID] [
PMCID]
12. Mundhada AS, Tenpe S. A study of organisms causing surgical site infections and their antimicrobial susceptibility in a tertiary care government hospital. 2015;58(2):195-200. [
DOI:10.4103/0377-4929.155313] [
PMID]
13. Javiya VA, Ghatak SB, Patel KR, Patel J. Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India. 2008;40(5):230-234. [
DOI:10.4103/0253-7613.44156] [
PMID] [
PMCID]
14. Taheriha M, Ghadermazi M, Amani VJJoMS. Dimeric and polymeric mercury (II) complexes of 1-methyl-1, 2, 3, 4-tetrazole-5-thiol: Synthesis, crystal structure, spectroscopic characterization, and thermal analyses. 2016;1107:57-65. [
DOI:10.1016/j.molstruc.2015.11.012]
15. Collee J, Duguid J, Fraser A, Marmion B, Simmons A, Marimion B. Laboratory strategy in the diagnosis of infective syndromes. New York: Churchill Livingstone; 2006.
16. Palavutitotai N, Jitmuang A, Tongsai S, Kiratisin P, Angkasekwinai N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. 2018;13(2):e0193431. [
DOI:10.1371/journal.pone.0193431] [
PMID] [
PMCID]
17. Boguslavsky Y, Fadida T, Talyosef Y, Lellouche J.P. Controlling the wettability properties of polyester fibers using grafted functional nanomaterials. Journal of Materials Chemistry. 2011;21(28):10304-10310. [
DOI:10.1039/c1jm10823a]
18. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-45. [
DOI:10.1007/978-1-61779-080-5_20] [
PMID]
19. Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol. 2010;300(6):371-9. [
DOI:10.1016/j.ijmm.2010.04.005] [
PMID]
20. Rodriguez-Martinez J.M, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrobial agents chemotherapy. 2009;53(11):4783-8. [
DOI:10.1128/AAC.00574-09] [
PMID] [
PMCID]
21. Hooper DC. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis. 2000;31Supple 2:S24-8. [
DOI:10.1086/314056] [
PMID]
22. Kim J, Kang CI, Baek JY, Cho SY, Kim SH, Ko KS, et al. Treatment failure due to induction of ciprofloxacin resistance during combination therapy with colistin and ciprofloxacin in multidrug-resistant Pseudomonas aeruginosa bacteraemia. International journal of antimicrobial agents. 2014;43(4):391. [
DOI:10.1016/j.ijantimicag.2014.01.020] [
PMID]
23. Kettner M, Kallova J, Hletkova M, Milosovic P. Incidence and mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa serotype O11 isolates. Infection. 1995;23(6):380-3. [
DOI:10.1007/BF01713571] [
PMID]
24. Tassios PT, Gennimata V, Maniatis AN, Fock C, Legakis NJ, Group GPaS. Emergence of multidrug resistance in ubiquitous and dominant Pseudomonas aeruginosa serogroup O: 11. The Greek Pseudomonas Aeruginosa Study Group. J clin microbiol. 1998;36(4):897-901. [
DOI:10.1128/JCM.36.4.897-901.1998] [
PMID] [
PMCID]
25. Chatterjee S. Study of some genetic markers in some ethnic groups of Indian population. University of Kalyani.2013.