Volume 9, Issue 4 (Vol.9 No.4 Jan 2021)                   rbmb.net 2021, 9(4): 408-416 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bayatiani M R, Ahmadi A, Aghabozorgi R, Seif F. Concomitant Up-Regulation of Hsa- Mir-374 and Down-Regulation of Its Targets, GSK-3β and APC, in Tissue Samples of Colorectal Cancer. rbmb.net 2021; 9 (4) :408-416
URL: http://rbmb.net/article-1-513-en.html
Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran.
Abstract:   (3830 Views)
Background: The WNT-pathway is involved in several cancers, including colorectal cancer (CRC). Many cell signaling components and pathways are controlled by microRNAs. The main purpose of the present study was to investigate the expression of hsa-miR-374, and its two target genes of the Wnt-pathway in CRC clinical samples.

Methods: In this study, we predicted the miRNAs targeting key genes of WNT-pathway using bioinformatics algorithms. The expression levels of hsa-miR-374, APC and GSK-3β on 48 pairs of Formalin-Fixed Paraffin-Embedded (FFPE) CRC tumors and marginal-tumors were evaluated using real time-PCR. Additionally, the hsa-miR-374a-5p precursor sequence was amplified by whole-blood DNA as a template. This amplicon was cloned into pEGFP-c1 expression vector and transfected into SW742 cells. Aside from this, MTT assay was performed to evaluate the effect of miR-374 on cell viability.

Results: The bioinformatics analysis indicated that hsa-miR-374 binds to the regulatory region the key components of WNT-pathway, including APC and GSK-3β considering the recognition elements and mirSVR scores. Our results revealed significant down-regulation of GSK-3β (0.94 times, p= 0.0098) and APC (0.96 times, p= 0.03) and up-regulation of miR-374 (1.22 times, p= 0.0071) on tumor samples compared with their normal pairs. Meanwhile, the results of the over-expression of miR-374 showed down-regulation of APC and GSK-3β. MTT-assay also indicated that the miR-374 increased cell survival.

Conclusions: The results of our study indicated a concomitant change in the expression of miR-374 and its two related target genes, in clinical samples of CRC. Hsa-miR-374 might be as a helpful biomarker or therapeutic target in CRC.
Full-Text [PDF 428 kb]   (1621 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2020/06/7 | Accepted: 2020/06/28 | Published: 2021/03/8

References
1. Hurst DR, Edmonds MD, Welch DR. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 2009;69(19):7495-8. [DOI:10.1158/0008-5472.CAN-09-2111] [PMID] [PMCID]
2. Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J Gastroenterol. 2014;20(19):5694-5699. [DOI:10.3748/wjg.v20.i19.5694] [PMID] [PMCID]
3. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. nature. 2005;435(7043):834-8. [DOI:10.1038/nature03702] [PMID]
4. Sung JJ, Chong WS, Jin H, Lam EK, Shin VY, Yu J, et al. 1070 Differential Expression of MicroRNAs in Plasma of Colorectal Cancer Patients: A Potential Marker for Colorectal Cancer Screening. Gastroenterology. 2009;136(5):A-165. [DOI:10.1016/S0016-5085(09)60743-5]
5. Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer cell. 2014;25(4):469-83. [DOI:10.1016/j.ccr.2014.03.006] [PMID] [PMCID]
6. Yang Y, Peng W, Tang T, Xia L, Wang XD, Duan BF, et al. MicroRNAs as promising biomarkers for tumor-staging: evaluation of MiR21 MiR155 MiR29a and MiR92a in predicting tumor stage of rectal cancer. Asian Pac J Cancer Prev. 2014;15(13):5175-80. [DOI:10.7314/APJCP.2014.15.13.5175] [PMID]
7. Onyido EK, Sweeney E, Nateri AS. Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches. Mol cancer. 2016;15(1):56. [DOI:10.1186/s12943-016-0541-3] [PMID] [PMCID]
8. Cai SD, Chen JS, Xi ZW, Zhang LJ, Niu ML, Gao ZY. MicroRNA 144 inhibits migration and proliferation in rectal cancer by downregulating ROCK 1. Mol med Rep. 2015;12(5):7396-7402. [DOI:10.3892/mmr.2015.4391] [PMID] [PMCID]
9. Liao WT, Ye YP, Zhang NJ, Li TT, Wang SY, Cui YM, et al. MicroRNA‐30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2. J Pathol. 2014;232(4):415-27. [DOI:10.1002/path.4309] [PMID]
10. Wang HL, Hart J, Fan L, Mustafi R, Bissonnette M. Upregulation of glycogen synthase kinase 3β in human colorectal adenocarcinomas correlates with accumulation of CTNNB1. Clinical colorectal cancer. 2011;10(1):30-6. [DOI:10.3816/CCC.2011.n.004] [PMID]
11. Olsen AK, Coskun M, Bzorek M, Kristensen MH, Danielsen ET, Jørgensen S, et al. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells. Carcinogenesis. 2013;34(6):1361-9. [DOI:10.1093/carcin/bgt037] [PMID]
12. Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, et al. Deregulated GSK3β activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochemical and biophysical research communications. 2005;334(4):1365-1373. [DOI:10.1016/j.bbrc.2005.07.041] [PMID]
13. Jo P, Azizian A, Salendo J, Kramer F, Bernhardt M, Wolff HA, et al. Changes of microrna levels in plasma of patients with rectal cancer during chemoradiotherapy. Int J Mol Sci. 2017;18(6):1140. [DOI:10.3390/ijms18061140] [PMID] [PMCID]
14. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome biology. 2010;11(8):R90. [DOI:10.1186/gb-2010-11-8-r90] [PMID] [PMCID]
15. Cai D, He K, Chang SE, Tong D, Huang C. MicroRNA-302b enhances the sensitivity of hepatocellular carcinoma cell lines to 5-FU via targeting Mcl-1 and DPYD. Int J Mol Sci. 2015;16(10):23668-23682. [DOI:10.3390/ijms161023668] [PMID] [PMCID]
16. Nouraee N, Van Roosbroeck K, Vasei M, Semnani S, Samaei NM, Naghshvar F, et al. Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma. PloS one. 2013;8(9):e73009. [DOI:10.1371/journal.pone.0073009] [PMID] [PMCID]
17. Rothschild S. microRNA therapies in cancer. Molecular and cellular therapies. 2014;2:7. [DOI:10.1186/2052-8426-2-7] [PMID] [PMCID]
18. Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006;25(46):6188-96. [DOI:10.1038/sj.onc.1209913] [PMID]
19. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nature reviews Molecular cell biology. 2014;15(3):178-196. [DOI:10.1038/nrm3758] [PMID] [PMCID]
20. Kawahara K, Morishita T, Nakamura T, Hamada F, Toyoshima K, Akiyama T. Down-regulation of β-catenin by the colorectal tumor suppressor APC requires association with Axin and β-catenin. J Biol Chem. 2000;275(12):8369-74. [DOI:10.1074/jbc.275.12.8369] [PMID]
21. Mancinelli R, Carpino G, Petrungaro S, Mammola CL, Tomaipitinca L, Filippini A, et al. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid Med Cell Longev. 2017;2017:4629495. [DOI:10.1155/2017/4629495] [PMID] [PMCID]
22. Dweep H, Gretz N. miRWalk2. 0: a comprehensive atlas of microRNA-target interactions. Nature methods. 2015;12(8):697. [DOI:10.1038/nmeth.3485] [PMID]
23. Bian H, Zhou Y, Zhou D, Zhang Y, Shang D, Qi J. The latest progress on miR‐374 and its functional implications in physiological and pathological processes. J Cell Mol Med. 2019;23(5):3063-3076. [DOI:10.1111/jcmm.14219] [PMID] [PMCID]
24. Zhao Q, Li T, Qi J, Liu J, Qin C. The miR-545/374a cluster encoded in the Ftx lncRNA is overexpressed in HBV-related hepatocellular carcinoma and promotes tumorigenesis and tumor progression. PloS one. 2014;9(10):e109782. [DOI:10.1371/journal.pone.0109782] [PMID] [PMCID]
25. Ye J, Xu M, Tian X, Cai S, Zeng S. Research advances in the detection of miRNA. Journal of Pharmaceutical Analysis. 2019;9(4):217-226. [DOI:10.1016/j.jpha.2019.05.004] [PMID] [PMCID]
26. Abutorabi ES, Irani S, Yaghmaie M, Ghaffari SH. Abemaciclib (CDK4/6 Inhibitor) Blockade Induces Cytotoxicity in Human Anaplastic Thyroid Carcinoma Cells. Reports of Biochemistry & Molecular Biology. 2020;8(4):438-445.
27. Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, et al. MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J Clin Invest. 2013;123(2):556-79. [DOI:10.1172/JCI65871] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb