Volume 9, Issue 4 (Vol.9 No.4 Jan 2021)                   rbmb.net 2021, 9(4): 385-393 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Siyadat P, Ayatollahi H, Barati M, Sheikhi M, Shahidi M. High Resolution Melting Analysis for Evaluation of mir-612 (Rs12803915) Genetic Variant with Susceptibility to Pediatric Acute Lymphoblastic Leukemia. rbmb.net 2021; 9 (4) :385-393
URL: http://rbmb.net/article-1-556-en.html
Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
Abstract:   (4380 Views)
Background: Acute lymphoblastic leukemia (ALL) is a highly heterogeneous malignancy that accounts for nearly 75% of leukemias in children. While the exact mechanism of ALL is not fully understood, some genetic variants have been implicated as associated with ALL susceptibility. The association between some genetic variants in miRNA genes and ALL risk has been described previously. A previous study suggested that mir-612 rs12803915 G> A may be associated with pediatric ALL risk. High-resolution melting (HRM) analysis is a reliable method that can be applied for polymorphism detection.

Methods: This retrospective study was performed on 100 B-ALL patients (52 males and 48 females; age 4.6 ± 3.2 years) and 105 age- and sex-matched healthy controls (48 males and 57 females; age 5.1 ± 3 years). We used HRM to identify mir-612 rs12803915 genotypes. Sanger sequencing was applied to validate the HRM results.

Results: High resolution melting analysis was used to genotype the mir-612 rs12803915 polymorphism. We found no association between rs12803915 allele A and B-ALL risk in any inheritance models (p> 0.05).

Conclusions: HRM is a suitable method to detect SNP rs12803915 in the mir-612 gene; however, we found no significant association between the rs12803915 polymorphism and ALL risk.
Full-Text [PDF 419 kb]   (1737 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2020/08/30 | Accepted: 2020/09/14 | Published: 2021/03/8

References
1. Esparza SD, Sakamoto KM. Topics in pediatric leukemia-acute lymphoblastic leukemia. MedGenMed. 2005;7(1):23.
2. Silva-Junior AL, Alves FS, Kerr MW, Xabregas LA, Gama FM, Rodrigues MG, et al. Acute lymphoid and myeloid leukemia in a Brazilian Amazon population: Epidemiology and predictors of comorbidity and deaths. PloS one. 2019;14(8):e0221518. [DOI:10.1371/journal.pone.0221518] [PMID] [PMCID]
3. Wiemels JL, Walsh KM, de Smith AJ, Metayer C, Gonseth S, Hansen HM, et al. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun. 2018;9(1):286. [DOI:10.1038/s41467-017-02596-9] [PMID] [PMCID]
4. Guo LM, Xi JS, Ma Y, Shao L, Nie CL, Wang GJ. ARID5B gene rs10821936 polymorphism is associated with childhood acute lymphoblastic leukemia: a meta-analysis based on 39,116 subjects. Tumour Biol. 2014;35(1):709-13. [DOI:10.1007/s13277-013-1097-0] [PMID]
5. Woo JS, Alberti MO, Tirado CA. Childhood B-acute lymphoblastic leukemia: a genetic update. Experimental hematology & oncology. 2014;3:16. [DOI:10.1186/2162-3619-3-16] [PMID] [PMCID]
6. Esmaili MA, Kazemi A, Zaker F, Faranoush M, Rezvany MR. Effects of Reduced Mir-24 Expression on Plasma Methotrexate Levels, Therapy-Related Toxicities, and Patient Outcomes in Pediatric Acute Lymphoblastic Leukemia. Reports of Biochemistry & Molecular Biology. 2020;8(4):358.
7. Mishra PJ, Banerjee D, Bertino JR. MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell cycle. 2008;7(7):853-8. [DOI:10.4161/cc.7.7.5666] [PMID]
8. Luan C, Yang Z, Chen B. The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy. Onco Targets Ther. 2015;8:2903-2914. [DOI:10.2147/OTT.S92470] [PMID] [PMCID]
9. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389-402. [DOI:10.1038/nrc2867] [PMID] [PMCID]
10. Dzikiewicz-Krawczyk A. MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies. Crit Rev Oncol Hematol. 2015;93(1):1-17. [DOI:10.1016/j.critrevonc.2014.08.006] [PMID]
11. Hasani SS, Hashemi M, Eskandari-Nasab E, Naderi M, Omrani M, Sheybani-Nasab M. A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report. Tumor Biol. 2014;35(1):219-25. [DOI:10.1007/s13277-013-1027-1] [PMID]
12. Jemimah Devanandan H, Venkatesan V, Scott JX, Magatha LS, Durairaj Paul SF, Koshy T. MicroRNA 146a polymorphisms and expression in Indian children with acute lymphoblastic leukemia. Lab Med. 2019;50(3):249-253. [DOI:10.1093/labmed/lmy074] [PMID]
13. Gutierrez-Camino A, Martin-Guerrero I, Dolzan V, Jazbec J, Carbone-Baneres A, Garcia de Andoin N, et al. Involvement of SNPs in miR-3117 and miR-3689d2 in childhood acute lymphoblastic leukemia risk. Oncotarget. 2018;9(33):22907-22914. [DOI:10.18632/oncotarget.25144] [PMID] [PMCID]
14. Tong N, Chu H, Wang M, Xue Y, Du M, Lu L, et al. Pri-miR-34b/c rs4938723 polymorphism contributes to acute lymphoblastic leukemia susceptibility in Chinese children. Leuk Lymphoma. 2016;57(6):1436-41. [DOI:10.3109/10428194.2015.1092528] [PMID]
15. Hashemi M, Bahari G, Naderi M, Sadeghi-Bojd S, Taheri M. Pri-miR-34b/c rs4938723 polymorphism is associated with the risk of childhood acute lymphoblastic leukemia. Cancer Genet. 2016;209(11):493-496. [DOI:10.1016/j.cancergen.2016.09.009] [PMID]
16. Xue Y, Yang X, Hu S, Kang M, Chen J, Fang Y. A genetic variant in miR‐100 is a protective factor of childhood acute lymphoblastic leukemia. Cancer Med. 2019;8(5):2553-2560. [DOI:10.1002/cam4.2082] [PMID] [PMCID]
17. Lin CY, Li MJ, Chang JG, Liu SC, Weng T, Wu KH, et al. High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan. Blood Cells Mol Dis. 2014;52(2-3):140-5. [DOI:10.1016/j.bcmd.2013.10.003] [PMID]
18. Vali Z, Raz A, Bokharaei H, Nabavi M, Bemanian MH, Yazdi MS, et al. Development of a high-resolution melting analysis method based on SYBR Green-I for rs7216389 locus genotyping in asthmatic child patients. Avicenna J Med Biotechnol. 2014;6(2):72-80.
19. Qi JH, Wang J, Chen J, Shen F, Huang JT, Sen S, et al. High-resolution melting analysis reveals genetic polymorphisms in microRNAs confer hepatocellular carcinoma risk in Chinese patients. BMC cancer. 2014;14(1):643. [DOI:10.1186/1471-2407-14-643] [PMID] [PMCID]
20. Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL, et al. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol. 2003;3:18. [DOI:10.1186/1472-6750-3-18] [PMID] [PMCID]
21. Niya MH, Basi A, Koochak A, Tameshkel FS, Rakhshani N, Zamani F, et al. Sensitive high-resolution melting analysis for screening of KRAS and BRAF mutations in Iranian human metastatic colorectal cancers. Asian Pac J Cancer Prev. 2016;17(12):5147-5152.
22. Kim HK, Prokunina-Olsson L, Chanock SJ. Common genetic variants in miR-1206 (8q24. 2) and miR-612 (11q13. 3) affect biogenesis of mature miRNA forms. PloS one. 2012;7(10):e47454. [DOI:10.1371/journal.pone.0047454] [PMID] [PMCID]
23. Gutierrez-Camino A, Lopez-Lopez E, Martin-Guerrero I, Piñan MA, Garcia-Miguel P, Sanchez-Toledo J, et al. Noncoding RNA-related polymorphisms in pediatric acute lymphoblastic leukemia susceptibility. Pediatric research. 2014;75(6):767-773. [DOI:10.1038/pr.2014.43] [PMID]
24. Pourhoseingholi MA, Vahedi M, Rahimzadeh M. Sample size calculation in medical studies. Gastroenterol Hepatol Bed Bench. 2013;6(1):14-17.
25. Er TK, Chang JG. High-resolution melting: applications in genetic disorders. Clin Chim Acta. 2012;414:197-201. [DOI:10.1016/j.cca.2012.09.012] [PMID]
26. Vossen RH, Aten E, Roos A, den Dunnen JT. High‐Resolution Melting Analysis (HRMA)-More than just sequence variant screening. Hum Mutat. 2009;30(6):860-6. [DOI:10.1002/humu.21019] [PMID]
27. Wittwer CT. High‐resolution DNA melting analysis: advancements and limitations. Hum Mutat. 2009;30(6):857-9. [DOI:10.1002/humu.20951] [PMID]
28. Reed GH, Kent JO, Wittwer CT. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. 2007;8(6). [DOI:10.2217/14622416.8.6.597] [PMID]
29. Boyd EM, Bench AJ, van't Veer MB, Wright P, Bloxham DM, Follows GA, et al. High resolution melting analysis for detection of BRAF exon 15 mutations in hairy cell leukaemia and other lymphoid malignancies. Br J Haematol. 2011;155(5):609-12. [DOI:10.1111/j.1365-2141.2011.08868.x] [PMID]
30. Montgomery JL, Sanford LN, Wittwer CT. High-resolution DNA melting analysis in clinical research and diagnostics. Expert review of molecular diagnostics. 2010;10(2):219-40. [DOI:10.1586/erm.09.84] [PMID]
31. Zhang L, Cui G, Li Z, Wang H, Ding H, Wang DW. Comparison of high-resolution melting analysis, TaqMan Allelic discrimination assay, and Sanger sequencing for Clopidogrel efficacy genotyping in routine molecular diagnostics. J Mol Diagn. 2013;15(5):600-6. [DOI:10.1016/j.jmoldx.2013.04.005] [PMID]
32. Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem. 2004;50(10):1748-54. [DOI:10.1373/clinchem.2003.029751] [PMID]
33. Zhu Y, Zhang HL, Wang QY, Chen MJ, Liu LB. Overexpression of microRNA-612 restrains the growth, invasion, and tumorigenesis of melanoma cells by targeting Espin. Mol Cells. 2018;41(2):119-126.
34. Liu M, Chen Y, Huang B, Mao S, Cai K, Wang L, et al. Tumor-suppressing effects of microRNA-612 in bladder cancer cells by targeting malic enzyme 1 expression. International journal of oncology. 2018;52(6):1923-1933. [DOI:10.3892/ijo.2018.4342] [PMID] [PMCID]
35. Sheng L, He P, Yang X, Zhou M, Feng Q. miR-612 negatively regulates colorectal cancer growth and metastasis by targeting AKT2. Cell death & disease. 2015;6(7):e1808. [DOI:10.1038/cddis.2015.184] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb