Volume 11, Issue 1 (Vol.11 No.1 Apr 2022)                   rbmb.net 2022, 11(1): 44-53 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimi S, Rezaei Fakhrnezhad F, Jahangiri S, Borjkhani M, Behboodi R, Monfaredan A. The IGSF1, Wnt5a, FGF14, and ITPR1 Gene Expression and Prognosis Hallmark of Prostate Cancer. rbmb.net. 2022; 11 (1) :44-53
URL: http://rbmb.net/article-1-569-en.html
Department of Hematology, Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Abstract:   (1694 Views)
Background: Prostate cancer is considered as the second leading cause of cancer related death in men worldwide and the third frequent cancer among Iranian men. Despite the use of PSA as the only biomarker for early diagnosis of prostate cancer, its application in clinical settings is under debate. Therefore, the introduction of new molecular markers for early detection of prostate cancer is needed.

Methods: In the present study we intended to evaluate the expression of IGSF1, Wnt5a, FGF14, and ITPR1 in prostate cancer specimens by real time PCR. Biopsy samples of 40 prostate cancer cases and 41 healthy Iranian men were compared to determine the relative gene expression of IGSF1, Wnt5a, FGF14, and ITPR1 by real time PCR.

Results: Our results showed that Wnt5a, FGF14, and IGSF1 were significantly overexpressed in the prostate cancer patients while the mean relative expression of ITPR1 showed a significant decrease in PCa samples compared to healthy controls.

Conclusions: According to results of the present study, the combination panel of IGSF1, Wnt5a, FGF14, and ITPR1 genes could be considered as potential genetic markers for prostate cancer diagnosis. However further studies on larger populations and investigating the clinicopathological relevance of these genes is needed.
Full-Text [PDF 353 kb]   (475 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2020/09/8 | Accepted: 2020/09/29 | Published: 2022/05/26

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. [DOI:10.3322/caac.21492] [PMID]
2. Hosseini M-S, Hosseini F, Ahmadi A, Mozafari M, Amjadi I. Antiproliferative Activity of Hypericum perforatum, Achillea millefolium, and Aloe vera in Interaction with the Prostatic Activity of CD82. Rep Biochem Mol Biol. 2019;8(3):260-268.
3. Siri FH, Salehiniya H. Pancreatic cancer in Iran: an epidemiological review. J Gastrointest Cancer. 2020;51(2):418-424. [DOI:10.1007/s12029-019-00279-w] [PMID]
4. Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320-8. [DOI:10.1056/NEJMoa0810084] [PMID]
5. Chen F-z, Zhao X-k. Prostate cancer: current treatment and prevention strategies. Iran Red Crescent Med J. 2013;15(4):279-284. [DOI:10.5812/ircmj.6499] [PMID] [PMCID]
6. Marta GN, Hanna SA, Fernandes da Silva JL, Carvalho HdA. Screening for prostate cancer: an updated review. Expert review of anticancer therapy. 2013;13(1):101-8. [DOI:10.1586/era.12.154] [PMID]
7. Trantham LC, Nielsen ME, Mobley LR, Wheeler SB, Carpenter WR, Biddle AK. Use of prostate‐specific antigen testing as a disease surveillance tool following radical prostatectomy. Cancer. 2013;119(19):3523-30. [DOI:10.1002/cncr.28238] [PMID] [PMCID]
8. Lee YJ, Park JE, Jeon BR, Lee SM, Kim SY, Lee YK. Is prostate-specific antigen effective for population screening of prostate cancer? A systematic review. Ann Lab Med. 2013;33(4):233-41. [DOI:10.3343/alm.2013.33.4.233] [PMID] [PMCID]
9. Gann PH. Risk factors for prostate cancer. Rev Urol. 2002;4(Suppl 5):S3-S10.
10. Chung BH, Horie S, Chiong E. The incidence, mortality, and risk factors of prostate cancer in Asian men. Prostate Int. 2019;7(1):1-8. https://doi.org/10.1016/j.prnil.2018.11.001 [DOI:10.1016/j.prnil.2019.06.001] [PMID] [PMCID]
11. Sun Y, Bak B, Schoenmakers N, Van Trotsenburg AP, Oostdijk W, Voshol P, et al. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat Genet. 2012;44(12):1375-81. [DOI:10.1038/ng.2453] [PMID] [PMCID]
12. Wang Y, Brûlé E, Silander T, Bak B, Joustra SD, Bernard DJ. The short mRNA isoform of the immunoglobulin superfamily, member 1 gene encodes an intracellular glycoprotein. PloS one. 2017;12(7):e0180731. [DOI:10.1371/journal.pone.0180731] [PMID] [PMCID]
13. Guan Y, Wang Y, Bhandari A, Xia E, Wang O. IGSF1: A novel oncogene regulates the thyroid cancer progression. Cell Biochem Funct. 2019;37(7):516-524. [DOI:10.1002/cbf.3426] [PMID]
14. MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9-26. [DOI:10.1016/j.devcel.2009.06.016] [PMID] [PMCID]
15. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68-75. [DOI:10.4161/org.4.2.5851] [PMID] [PMCID]
16. Bhatt PM, Malgor R. Wnt5a: a player in the pathogenesis of atherosclerosis and other inflammatory disorders. Atherosclerosis. 2014;237(1):155-62. [DOI:10.1016/j.atherosclerosis.2014.08.027] [PMID] [PMCID]
17. Zhou Y, Kipps TJ, Zhang S. Wnt5a signaling in normal and cancer stem cells. Stem Cells Int. 2017;2017:5295286. https://doi.org/10.1155/2017/3467360 [DOI:10.1155/2017/5295286]
18. Wang Q, Symes AJ, Kane CA, Freeman A, Nariculam J, Munson P, et al. A novel role for Wnt/Ca 2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PloS one. 2010;5(5):e10456. [DOI:10.1371/journal.pone.0010456] [PMID] [PMCID]
19. Prole DL, Taylor CW. Inositol 1, 4, 5‐trisphosphate receptors and their protein partners as signalling hubs. J Physiol. 2016;594(11):2849-66. [DOI:10.1113/JP271139] [PMID] [PMCID]
20. Foskett JK, White C, Cheung K-H, Mak D-OD. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 2007;87(2):593-658. [DOI:10.1152/physrev.00035.2006] [PMID] [PMCID]
21. Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, Schwartzentruber J, et al. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis. 2012;7:67. [DOI:10.1186/1750-1172-7-67] [PMID] [PMCID]
22. Olsen SK, Garbi M, Zampieri N, Eliseenkova AV, Ornitz DM, Goldfarb M, et al. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem. 2003;278(36):34226-36. [DOI:10.1074/jbc.M303183200] [PMID]
23. Su T, Zhang N, Huang L, Wei G, Peng S, Zeng Z, et al. FGF14 is a functional tumor supressor trough inhibiting PI3K/AKT/MTOR pathway in colorectal cancer. J Cancer.
24. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nature reviews Drug discovery. 2009;8(3):235-253. [DOI:10.1038/nrd2792] [PMID] [PMCID]
25. Smallwood PM, Munoz-Sanjuan I, Tong P, Macke JP, Hendry SH, Gilbert DJ, et al. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc Natl Acad Sci U S A. 1996;93(18):9850-9857. [DOI:10.1073/pnas.93.18.9850] [PMID] [PMCID]
26. Pablo JL, Pitt GS. FGF14 is a regulator of KCNQ2/3 channels. Proc Natl Acad Sci U S A. 2017;114(1):154-159. [DOI:10.1073/pnas.1610158114] [PMID] [PMCID]
27. Wang Q, Bardgett ME, Wong M, Wozniak DF, Lou J, McNeil BD, et al. Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron. 2002;35(1):25-38. [DOI:10.1016/S0896-6273(02)00744-4]
28. van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de Graaf R, de Koning I, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral ataxia [corrected]. Am J Hum Genet. 2003;72(1):191-9. [DOI:10.1086/345488] [PMID] [PMCID]
29. Liu MY, Zhang H, Hu YJ, Chen YW, Zhao XN. Identification of key genes associated with cervical cancer by comprehensive analysis of transcriptome microarray and methylation microarray. Oncol Lett. 2016;12(1):473-478. [DOI:10.3892/ol.2016.4658] [PMID] [PMCID]
30. Frattini A, Faranda S, Redolfi E, Allavena P, Vezzoni P. Identification and genomic organization of a gene coding for a new member of the cell adhesion molecule family mapping to Xq25. Gene. 1998;214(1-2):1-6. [DOI:10.1016/S0378-1119(98)00253-4]
31. Joustra SD, Schoenmakers N, Persani L, Campi I, Bonomi M, Radetti G, et al. The IGSF1 deficiency syndrome: characteristics of male and female patients. J Clin Endocrinol Metab. 2013;98(12):4942-52. [DOI:10.1210/jc.2013-2743] [PMID]
32. Mazzarella R, Pengue G, Jones J, Jones C, Schlessinger D. Cloning and expression of an immunoglobulin superfamily gene (IGSF1) in Xq25. Genomics. 1998;48(2):157-62. [DOI:10.1006/geno.1997.5156] [PMID]
33. Patil MA, Chua M-S, Pan K-H, Lin R, Lih C-J, Cheung S-T, et al. An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma. Oncogene. 2005;24(23):3737-47. [DOI:10.1038/sj.onc.1208479] [PMID]
34. Faucz FR, Horvath AD, Azevedo MF, Levy I, Bak B, Wang Y, et al. Is IGSF1 involved in human pituitary tumor formation?. Endocr Relat Cancer. 2015;22(1):47-54. [DOI:10.1530/ERC-14-0465] [PMID] [PMCID]
35. Jalali Tafti H, Hashemi M, Alimohammadzadeh K. Study of FGF14 gene expression and cancer progression in colorectal cancer tissue samples. Medical Science Journal of Islamic Azad Univesity-Tehran Medical Branch. 2019;29(3):210-215. [DOI:10.29252/iau.29.3.210]
36. Yamamoto H, Oue N, Sato A, Hasegawa Y, Matsubara A, Yasui W, et al. Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene. 2010;29(14):2036-2046. [DOI:10.1038/onc.2009.496] [PMID]
37. Khaja ASS, Helczynski L, Edsjö A, Ehrnström R, Lindgren A, Ulmert D, et al. Elevated level of Wnt5a protein in localized prostate cancer tissue is associated with better outcome. PloS one. 2011;6(10):e26539. [DOI:10.1371/journal.pone.0026539] [PMID] [PMCID]
38. Khaja ASS, Egevad L, Helczynski L, Wiklund P, Andersson T, Bjartell A. Emphasizing the role of Wnt5a protein expression to predict favorable outcome after radical prostatectomy in patients with low‐grade prostate cancer. Cancer medicine. 2012;1(1):96-104. [DOI:10.1002/cam4.5] [PMID] [PMCID]
39. Thiele S, Göbel A, Rachner TD, Fuessel S, Froehner M, Muders MH, et al. WNT5A has anti‐prostate cancer effects in vitro and reduces tumor growth in the skeleton in vivo. J Bone Miner Res. 2015;30(3):471-80. [DOI:10.1002/jbmr.2362] [PMID]
40. Engedal N, Torgersen ML, Guldvik IJ, Barfeld SJ, Bakula D, Sætre F, et al. Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy. 2013;9(10):1475-90. [DOI:10.4161/auto.25900] [PMID]
41. Decuypere J-P, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgó J, et al. Ins (1, 4, 5) P 3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy. 2011;7(12):1472-89. [DOI:10.4161/auto.7.12.17909] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb