Volume 10, Issue 1 (Vol.10 No.1 Apr 2021)                   rbmb.net 2021, 10(1): 105-118 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourbagher R, Ghorbani H, Akhavan-Niaki H, Jorsaraei S G A, Fattahi S, Ghooran S, et al . Downregulation of Stemness Genes and Induction of Necrosis in Rat LA7 Cancer Stem Cells Induced Tumors Treated with Starved Fibroblasts Culture Supernatant. rbmb.net. 2021; 10 (1) :105-118
URL: http://rbmb.net/article-1-578-en.html
Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
Abstract:   (693 Views)
Background: Stem cell differentiation therapy is a promising strategy in cancer treatment. we show that protein cocktail prepared from serum starved fibroblasts has therapeutic potential based on this strategy.

Methods: The condition medium was prepared from foreskin isolated fibroblasts and analyzed by Liquid chromatography electrospray ionization mass spectrometry-mass spectrometry (LC-ESI-MS/MS). LA7 mammary gland cancer stem cells originated tumors were induced in Sprague Dawley rats. The rats treated subcutaneously with DMEM (group A), condition medium (group B), or normal saline (group C) once daily for 7 days. Then the tumors were removed and divided into the two parts, one part was used to quantify gene expression by stem-loop RT-qPCR assay and the other part was used for Hematoxylin & Eosin (H & E), Giemsa, and immunohistochemistry (IHC) staining.

Results: All induced tumors appeared as sarcomatoid carcinoma (SC). Immunohistochemistry staining confirmed this conclusion by recognizing the tumor as Ki67+, cytokeratin+, vimentine+, and estrogen receptor negative SC. RT-qPCR analysis revealed that Oct4-, Sox-2, Nanog- gene expression was much reduced in the condition medium treated tumors versus proper controls (p< 0.05). Tissue necrosis was more prevalent in this group while tumors volume was diminished almost by 40%. The LC-ESI-MS/MS analysis unrevealed the stemness reducing and the cell death inducing proteins such as, pigment epithelium-derived factor (PEDF), insulin like growth factor binding protein-5 (IGFBP-5) and -7 (IGFBP-7) in the condition medium.

Conclusions: This study showed that the substances released from starved human fibroblasts were able to down-regulate the stemness-related genes and induce necrosis in LA7 derived tumors.
Full-Text [PDF 834 kb]   (169 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2020/09/28 | Accepted: 2020/10/11 | Published: 2021/05/9

References
1. Ma Y, Machesky LM. Fascin1 in carcinomas: Its regulation and prognostic value. International Journal of Cancer. 2014;137(11):2534-2544. [DOI:10.1002/ijc.29260] [PMID]
2. Sadlonova A, Novak Z, Johnson M R, Bowe DB. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Research. 2005;7(1):R46-59. [DOI:10.1186/bcr949] [PMID] [PMCID]
3. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10(+)GPR77(+) Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172(4):841-56.e16. [DOI:10.1016/j.cell.2018.01.009] [PMID]
4. Munoz P, Iliou M S, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol. 2012;6(6):620-36. [DOI:10.1016/j.molonc.2012.10.006] [PMID] [PMCID]
5. Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell. 2008;126(4):663-76.
6. Van Schaijik B, Davis P F, Wickremesekera A C, Tan ST, Itinteang T, et al. Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol. 2018;71(1):88-91. [DOI:10.1136/jclinpath-2017-204815] [PMID]
7. Esch D, Vahokoski J, Groves M R, Pogenberg V, Cojocaru V, Vom Bruch H, et al. A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat Cell Biol. 2013;15(3):295-301. [DOI:10.1038/ncb2680] [PMID]
8. Munro M J, Wickremesekera S K, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: a review. J Clin Pathol. 2018;71(2):110-116. [DOI:10.1136/jclinpath-2017-204739] [PMID]
9. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12(1):15-30. [DOI:10.1016/j.stem.2012.12.007] [PMID] [PMCID]
10. Ghazi N, Aali N, Shahrokhi V R, Mohajertehran F, Saghravanian N. Relative Expression of SOX2 and OCT4 in Oral Squamous Cell Carcinoma and Oral Epithelial Dysplasia. Rep Biochem Mol Biol. 2020;9(2):171-179. [DOI:10.29252/rbmb.9.2.171] [PMID] [PMCID]
11. Jeter C R, Yang T, Wang J, Chao HP, Tang DG. Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells. 2015;33(8):2381-90. [DOI:10.1002/stem.2007] [PMID] [PMCID]
12. You L, Guo X, Huang Y. Correlation of Cancer Stem-Cell Markers OCT4, SOX2, and NANOG with Clinicopathological Features and Prognosis in Operative Patients with Rectal Cancer. Yonsei Med J. 2018;59(1):35-42. [DOI:10.3349/ymj.2018.59.1.35] [PMID] [PMCID]
13. Xiang R, Liao D, Cheng T, H Zhou, Q Shi, T S Chuang, et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br J Cancer. 2011;104(9):1410-7. [DOI:10.1038/bjc.2011.94] [PMID] [PMCID]
14. Leis O, Eguiara A, Lopez-Arribillaga E, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 2012;31(11):1354-65. [DOI:10.1038/onc.2011.338] [PMID]
15. Sousa B, Ribeiro A S, Paredes J. Heterogeneity and Plasticity of Breast Cancer Stem Cells. Adv Exp Med Biol. 2019;1139:83-103. [DOI:10.1007/978-3-030-14366-4_5] [PMID]
16. Garg M. Epithelial plasticity and cancer stem cells: Major mechanisms of cancer pathogenesis and therapy resistance. World J Stem Cells. 2017;9(8):118-126. [DOI:10.4252/wjsc.v9.i8.118] [PMID] [PMCID]
17. Britain C M, Dorsett K A, Bellis S L. The Glycosyltransferase ST6Gal-I Protects Tumor Cells against Serum Growth Factor Withdrawal by Enhancing Survival Signaling and Proliferative Potential. J Biol Chem. 2017;292(11):4663-4673. [DOI:10.1074/jbc.M116.763862] [PMID] [PMCID]
18. Tian X, Huang B, Zhang X P, Lu M, Liu F, Onuchic JN, et al. Modeling the response of a tumor-suppressive network to mitogenic and oncogenic signals. PNAS. 2017;114(21):5337-5342. [DOI:10.1073/pnas.1702412114] [PMID] [PMCID]
19. Sun H, Chen L, Cao S, Liang Y, Xu Y, et al. Warburg Effects in Cancer and Normal Proliferating Cells: Two Tales of the Same Name. Genomics Proteomics Bioinformatics. 2019;17(3):273-286. [DOI:10.1016/j.gpb.2018.12.006] [PMID] [PMCID]
20. Golpour M, Akhavan Niaki H, Khorasani H R, Hajian A, Mehrasa R, A Mostafazadeh, et al. Human fibroblast switches to anaerobic metabolic pathway in response to serum starvation: a mimic of warburg effect. Int J Mol Cell Med. 2014;3:74-80.
21. Pourbagher R, Akhavan Niaki H, Ali Jorsaraei S G A. Targeting breast cancer stem cells of rat through repressing the genes of
22. stemness-related transcription factors using three different biological fluids. Gene. 2020; 15;734:144381. [DOI:10.1016/j.gene.2020.144381] [PMID]
23. Zucchi I, Sanzone S, Astigiano S, Pelucchi P, Scotti M, Valsecchi V, et al. The properties of a mammary gland cancer stem cell. Proc Natl Acad Sci U S A. 2007;104(25):10476-81. [DOI:10.1073/pnas.0703071104] [PMID] [PMCID]
24. Oyenihi O R, Krygsman A, Verhoog N, Beer D, Saayman MJ, Mouton TM, et al. Chemoprevention of LA7-Induced Mammary Tumor Growth by SM6Met, a Well-Characterized Cyclopia Extract. Front Pharmacol. 2018;9:650. [DOI:10.3389/fphar.2018.00650] [PMID] [PMCID]
25. Brook N, Brook E, Dharmarajan A, Chan A, Dass CR, et al. The role of pigment epithelium-derived factor in protecting against cellular stress. Free Radic Res. 2019;53(11-12):1166-1180. [DOI:10.1080/10715762.2019.1697809] [PMID]
26. Akkiprik M, Feng Y, Wang H, Hu L, Sahin A, Krishnamurthy S, et al. Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer. Breast Cancer Res. 2008;10(4):212. [DOI:10.1186/bcr2116] [PMID] [PMCID]
27. Chen D, Siddiq A, Emdad L, Rajasekaran D, Gredler R, Shenet XN, et al. Insulin-like growth factor-binding protein-7 (IGFBP7): a promising gene therapeutic for hepatocellular carcinoma (HCC). Mol Ther. 2013;21(4):758-66. [DOI:10.1038/mt.2012.282] [PMID] [PMCID]
28. Pandamooz S, Hadipour A, Akhavan-Niaki H, Pourghasem M, Abedian Z, Motevallizadeh Ardekani A, et al. Short exposure to collagenase and coculture with mouse embryonic pancreas improve human dermal fibroblast culture. Biotechnol Appl Biochem. 2012;59(3):254-61. [DOI:10.1002/bab.1020] [PMID]
29. Golpour M, Fattahi S, Niaki H A, Hadipoor A, Abedian Z, Ahangarianet GR, et al. Starved human fibroblasts secrete acidic proteins inducing post re-feeding proliferation and in vitro cell migration: a potential tool for wound healing. Biol Cell. 2014;106(5):139-50. [DOI:10.1111/boc.201300063] [PMID]
30. Fattahi S, Amirbozorgi G, Lotfi M, Amini Navaei B, Kavoosian S, Asouri M, et al. Development of a Universal Taqman Probe for mRNA Gene Expression Analysis. Iranian Journal of Science and Technology, Transaction A: Science. 2018;42:363-370. [DOI:10.1007/s40995-017-0173-5]
31. Wang M, Chen C, Jemielita T, Anderson J, Nicole X, Hu C, et al. Are tumor size changes predictive of survival for checkpoint blockade based immunotherapy in metastatic melanoma?. J Immunother Cancer. 2019;7(1):39. [DOI:10.1186/s40425-019-0513-4] [PMID] [PMCID]
32. Shi X, Zhang Y, Zheng J, et al. Reactive oxygen species in cancer stem cells. Antioxid Redox Signal. 2012;16:1215-28. [DOI:10.1089/ars.2012.4529] [PMID] [PMCID]
33. Hu Q, Khanna P, Ee Wong B S, Heng ZSL, CS Subhramanyam, LZ Thanga, et al. Oxidative stress promotes exit from the stem cell state and spontaneous neuronal differentiation. Oncotarget. 2018;9:4223-38. [DOI:10.18632/oncotarget.23786] [PMID] [PMCID]
34. Papa L, Djedaini M, Hoffman R. Mitochondrial Role in Stemness and Differentiation of Hematopoietic Stem Cells. Stem Cells International. 2019;2019. [DOI:10.1155/2019/4067162] [PMID] [PMCID]
35. Liang R and Ghaffari S. Stem cells, redox signaling, and stem cell aging. Antioxid Redox Signal. 2014;20:1902-16. [DOI:10.1089/ars.2013.5300] [PMID] [PMCID]
36. Wang J, Ding N, Li Y, Cheng H, Wang D, Yang Q, et al. Insulin-like growth factor binding protein 5 (IGFBP5) functions as a tumor suppressor in human melanoma cells. Oncotarget. 2015;6(24):20636-20649. [DOI:10.18632/oncotarget.4114] [PMID] [PMCID]
37. Belkacemi L, Zhang S X. Anti-tumor effects of pigment epithelium-derived factor (PEDF): implication for cancer therapy. A mini-review. J Exp Clin Cancer Res. 2016;35:4. [DOI:10.1186/s13046-015-0278-7] [PMID] [PMCID]
38. Srivastava N, Kollipara R K, Singh D K, Sudderth J, Hu Z, Nguyen H, et al. Inhibition of cancer cell proliferation by PPARgamma is mediated by a metabolic switch that increases reactive oxygen species levels. Cell Metab. 2014;20(4):650-61. [DOI:10.1016/j.cmet.2014.08.003] [PMID] [PMCID]
39. Komi DEA,Redegeld FA. Role of Mast Cells in Shaping the Tumor Microenvironment. linical Reviews in Allergy & Immunology. 2020;58:313-325. [DOI:10.1007/s12016-019-08753-w] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb