Volume 10, Issue 2 (Vol.10 No.2 Jul 2021)                   rbmb.net 2021, 10(2): 224-232 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pezeshki S, Hashemi P, Salimi A, Ebrahimi S, Javanzad M, Monfaredan A. Evaluation of NUF2 and GMNN Expression in Prostate Cancer: Potential Biomarkers for Prostate Cancer Screening. rbmb.net. 2021; 10 (2) :224-232
URL: http://rbmb.net/article-1-580-en.html
Department of Hematology, Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
Abstract:   (1038 Views)
Background: Prostate cancer (PC) is one of the most abundant cancers among men, and In Iran, has been responsible for 6% of all deaths from cancer in men. NUF2 and GMNN genes are considered as loci of susceptibility to tumorigenesis in humans. Alterations in expression of these genes have been reported in various malignancies. The aim of our study was to test whether different NUF2 and GMNN expression levels are associated with PC incidence and hence, might be considered as new molecular tools for PC screening.

Methods: Biopsy samples from 40 PC patients and 41 healthy Iranian men were used to determine the relative gene expression. After RNA extraction and cDNA synthesis, samples were analyzed using TaqMan Quantitative Real time PCR. Patients’ background information, included smoking habits and family histories of PC, were recorded. Stages and grades of their PC were classified by the TNM tumor, node, metastasis (TMN) staging system based on standard guidelines.

Results: NUF2 expression did not significantly differ between the groups, while GMNN expression was significantly greater in the PC specimens than in the controls.

Conclusions: Regarding the significant role of GMNN in various tumor phenotypes, and its importance in PC progression, the alteration in GMNN expression in PC samples vs. controls indicate that the genetic profiling of this cancer might be considered to personalize therapy for each patient in the future.
Full-Text [PDF 581 kb]   (475 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2020/09/30 | Accepted: 2020/10/13 | Published: 2021/08/26

1. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16-27. [DOI:10.1158/1055-9965.EPI-15-0578] [PMID]
2. Hosseini M-S, Hosseini F, Ahmadi A, Mozafari M, Amjadi I. Antiproliferative Activity of Hypericum perforatum, Achillea millefolium, and Aloe vera in Interaction with the Prostatic Activity of CD82. Rep Biochem Mol Biol. 2019;8(3):260-268.
3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. [DOI:10.3322/caac.21492] [PMID]
4. Kelly SP, Anderson WF, Rosenberg PS, Cook MB. Past, current, and future incidence rates and burden of metastatic prostate cancer in the United States. Eur Urol Focus. 2018;4(1):121-127. [DOI:10.1016/j.euf.2017.10.014] [PMID] [PMCID]
5. Hassanipour S, Fathalipour M, Salehiniya H. The incidence of prostate cancer in Iran: a systematic review and meta-analysis. Prostate Int. 2018;6(2):41-45. [DOI:10.1016/j.prnil.2017.11.003] [PMID] [PMCID]
6. Pagliuca M, Buonerba C, Fizazi K, Di Lorenzo G. The Evolving Systemic Treatment Landscape for Patients with Advanced Prostate Cancer. Drugs. 2019;79(4):381-400. [DOI:10.1007/s40265-019-1060-5] [PMID]
7. Ha Chung B, Horie S, Chiong E. The incidence, mortality, and risk factors of prostate cancer in Asian men. Prostate Int. 2019;7(1):1-8. [DOI:10.1016/j.prnil.2018.11.001] [PMID] [PMCID]
8. Vieira-Silva TS, Monteiro-Reis S, Barros-Silva D, Ramalho-Carvalho J, Graça I, Carneiro I, et al. Histone variant MacroH2A1 is downregulated in prostate cancer and influences malignant cell phenotype. Cancer Cell Int. 2019;19:112. [DOI:10.1186/s12935-019-0835-9] [PMID] [PMCID]
9. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015;163(4):1011-25. [DOI:10.1016/j.cell.2015.10.025] [PMID] [PMCID]
10. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32(17-18):1105-40. [DOI:10.1101/gad.315739.118] [PMID] [PMCID]
11. DeLuca JG, Moree B, Hickey JM, Kilmartin JV, Salmon E. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. Cell Biology. 2002;159(4):549-55. [DOI:10.1083/jcb.200208159] [PMID] [PMCID]
12. Liu D, Ding X, Du J, Cai X, Huang Y, Ward T, et al. Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment. Journal of Biological Chemistry. 2007;282(29):21415-24. [DOI:10.1074/jbc.M609026200] [PMID]
13. Brusini L, D'archivio S, McDonald J, Wickstead B. Ndc80/Nuf2-like protein KKIP1 connects a stable kinetoplastid outer kinetochore complex to the inner kinetochore and responds to metaphase tension. BioRxiv. 2019:764829. [DOI:10.1101/764829]
14. Sundin LJ, Guimaraes GJ, DeLuca JG. The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis. Molecular Biology of The Cell. 2011;22(6):759-68. [DOI:10.1091/mbc.e10-08-0671] [PMID] [PMCID]
15. Hayama S, Daigo Y, Kato T, Ishikawa N, Yamabuki T, Miyamoto M, et al. Activation of CDCA1-KNTC2, members of centromere protein complex, involved in pulmonary carcinogenesis. Cancer Research. 2006;66(21):10339-48. [DOI:10.1158/0008-5472.CAN-06-2137] [PMID]
16. Harao M, Hirata S, Irie A, Senju S, Nakatsura T, Komori H, et al. HLA‐A2‐restricted CTL epitopes of a novel lung cancer‐associated cancer testis antigen, cell division cycle associated 1, can induce tumor‐reactive CTL. International Journal of Cancer. 2008;123(11):2616-25. [DOI:10.1002/ijc.23823] [PMID]
17. Kaneko N, Miura K, Gu Z, Karasawa H, Ohnuma S, Sasaki H, et al. siRNA-mediated knockdown against CDCA1 and KNTC2, both frequently overexpressed in colorectal and gastric cancers, suppresses cell proliferation and induces apoptosis. Biochemical and Biophysical Research Communications. 2009;390(4):1235-40. [DOI:10.1016/j.bbrc.2009.10.127] [PMID]
18. Fu H, Shao L. Silencing of NUF2 inhibits proliferation of human osteosarcoma Saos-2 cells. European Review for Medical and Pharmacological Sciences. 2016;20(6):1071-9.
19. Hu P, Shangguan J, Zhang L. Downregulation of NUF2 inhibits tumor growth and induces apoptosis by regulating lncRNA AF339813. International Journal of Clinical and Experimental Pathology. 2015;8(3):2638.
20. Haruki T, Shomori K, Hamamoto Y, Taniguchi Y, Nakamura H, Ito H. Geminin expression in small lung adenocarcinomas: implication of prognostic significance. Lung Cancer. 2011;71(3):356-62. [DOI:10.1016/j.lungcan.2010.06.013] [PMID]
21. Fame RM, Lehtinen MK. Sister, Sister: Ependymal Cells and Adult Neural Stem Cells Are Separated at Birth by Geminin Family Members. Neuron. 2019;102(2):278-9. [DOI:10.1016/j.neuron.2019.02.040] [PMID]
22. Zhang L, Cai M, Gong Z, Zhang B, Li Y, Guan L, et al. Geminin facilitates FoxO3 deacetylation to promote breast cancer cell metastasis. The Journal of Clinical Investigation. 2017;127(6):2159-75. [DOI:10.1172/JCI90077] [PMID] [PMCID]
23. Carter HB. Differentiation of lethal and non lethal prostate cancer: PSA and PSA isoforms and kinetics. Asian Journal of Andrology. 2012;14(3):355. [DOI:10.1038/aja.2011.141] [PMID] [PMCID]
24. Nguyen CT, Kattan MW. Formalized prediction of clinically significant prostate cancer: is it possible? Asian Journal of Andrology. 2012;14(3):349. [DOI:10.1038/aja.2011.140] [PMID] [PMCID]
25. Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 2010;24(18):1967-2000. [DOI:10.1101/gad.1965810] [PMID] [PMCID]
26. Dong JT. Prevalent mutations in prostate cancer. Journal of cellular biochemistry. 2006;97(3):433-47. [DOI:10.1002/jcb.20696] [PMID]
27. Liu Q, Dai S-J, Li H, Dong L, Peng Y-P. Silencing of NUF2 inhibits tumor growth and induces apoptosis in human hepatocellular carcinomas. Asian Pac J Cancer Prev. 2014;15(20):8623-9. [DOI:10.7314/APJCP.2014.15.20.8623] [PMID]
28. Scanlan MJ, Simpson A, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immune. 2004;4.
29. Shiraishi T, Terada N, Zeng Y, Suyama T, Luo J, Trock B, et al. Cancer/Testis antigens as potential predictors of biochemical recurrence of prostate cancer following radical prostatectomy. J Transl Med. 2011;9:153. [DOI:10.1186/1479-5876-9-153] [PMID] [PMCID]
30. Takahashi S, Shiraishi T, Miles N, Trock BJ, Kulkarni P, Getzenberg RH. Nanowire analysis of cancer-testis antigens as biomarkers of aggressive prostate cancer. Urology. 2015;85(3):704.e1-7. [DOI:10.1016/j.urology.2014.12.004] [PMID] [PMCID]
31. Ballabeni A, Zamponi R, Moore JK, Helin K, Kirschner MW. Geminin deploys multiple mechanisms to regulate Cdt1 before cell division thus ensuring the proper execution of DNA replication. Proc Natl Acad Sci U S A. 2013;110(30):E2848-53. [DOI:10.1073/pnas.1310677110] [PMID] [PMCID]
32. Wohlschlegel JA, Kutok JL, Weng AP, Dutta A. Expression of geminin as a marker of cell proliferation in normal tissues and malignancies. Am J Pathol. 2002;161(1):267-73. [DOI:10.1016/S0002-9440(10)64178-8]
33. Champeris Tsaniras S, Villiou M, Giannou AD, Nikou S, Petropoulos M, Pateras IS, et al. Geminin ablation in vivo enhances tumorigenesis through increased genomic instability. J Pathol. 2018;246(2):134-140. [DOI:10.1002/path.5128] [PMID]
34. Yagi T, Inoue N, Yanai A, Murase K, Imamura M, Miyagawa Y, et al. Prognostic significance of geminin expression levels in Ki67-high subset of estrogen receptor-positive and HER2-negative breast cancers. Breast Cancer. 2016;23(2):224-30. [DOI:10.1007/s12282-014-0556-9] [PMID]
35. Xing Y, Wang C, Wu J. Expression of geminin, p16, and Ki67 in cervical intraepithelial neoplasm and normal tissues. Medicine (Baltimore). 2017;96(26):e7302. [DOI:10.1097/MD.0000000000007302] [PMID] [PMCID]
36. Vargas PA, Cheng Y, Barrett AW, Craig GT, Speight PM. Expression of Mcm-2, Ki-67 and geminin in benign and malignant salivary gland tumours. J Oral Pathol Med. 2008;37(5):309-18. [DOI:10.1111/j.1600-0714.2007.00631.x] [PMID]
37. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall Jr GD, Gardner LH, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7(15):20869-89. [DOI:10.18632/oncotarget.8029] [PMID] [PMCID]
38. Shomori K, Nishihara K, Tamura T, Tatebe S, Horie Y, Nosaka K, et al. Geminin, Ki67, and minichromosome maintenance 2 in gastric hyperplastic polyps, adenomas, and intestinal-type carcinomas: pathobiological significance. Gastric Cancer. 2010;13(3):177-85. [DOI:10.1007/s10120-010-0558-z] [PMID]
39. Di Bonito M, Cantile M, Collina F, Scognamiglio G, Cerrone M, La Mantia E, et al. Overexpression of cell cycle progression inhibitor geminin is associated with tumor stem-like phenotype of triple-negative breast cancer. J Breast Cancer. 2012;15(2):162-71. [DOI:10.4048/jbc.2012.15.2.162] [PMID] [PMCID]
40. Bánfi G, Teleki I, Nyirády P, Keszthelyi A, Romics I, Fintha A, et al. Changes of protein expression in prostate cancer having lost its androgen sensitivity. International Urology and Nephrology. 2015;47(7):1149-54. [DOI:10.1007/s11255-015-0985-1] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb